987 resultados para Northern Marginal Zone
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: A topographical map of the northn. part of New York Island : exhibiting the plan of Fort Washington, now Fort Knyphausen, with the rebels lines to the southward, which were forced by the troops under the command of the Rt. Honble. Earl Percy on the 16th. Novr. 1776, and survey'd immediately after by order of His Lordship, by Claude Joseph Sauthier, to which is added the attack made to the northd. by the Hessians ; survey'd by order of Lieutt. Genl. Knyphausen. It was published by Wm. Faden in 1777. Scale [ca. 1:20,000]. Covers Manhattan north of 92nd St. and a portion of the Bronx. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD83 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as topography, ground cover, roads, drainage, forts, battery, redoubts, barracks, troop and battle locations, and other defenses, landings, bridges, and more. Relief is shown by hachures. Includes index to military points of interest. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Map of that part of the city of New York north of 155 street. It was published by Major & Knapp Eng. Mfg. & Lith. Co. in December 1865. Scale [ca. 1:6,375]. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD83 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads and streets laid out by the Commissioners of the Central Park, drainage, bridges, selected buildings, and more. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
Pleistocene summer sea-surface temperatures (SSST) have been reconstructed on a composite core section recovered in the Subantarctic Zone of the Southern Ocean from planktonic foraminifers applying the Modern Analog Technique. The composite consists of Core PS2489-2 and the sections recovered at ODP Site 1090, and documents the last 1.83 Ma. Three distinct climatic periods can be identified that mirror the Pleistocene development of the Southern Ocean hydrography. Cold climatic conditions prevailed at 43°S during glacial as well as during interglacial periods during the early Pleistocene (1.83-0.87 Ma), indicating a northward shift of isotherms that characterize the present-day Polar Front Zone by about 7° of latitude. Evidence shows a strong linkage between Southern Ocean and low latitude climate during that interval time. Between the Mid-Pleistocene Revolution (ca. 0.9 Ma) and the Mid-Brunhes Event (ca. 0.4 Ma), we observe higher amplitude fluctuations in the SSST between glacial and interglacial periods, corresponding to the temperature range between the present Polar Front and Subantarctic Front. These climatic variations have been related to changes in the northern hemisphere ice sheets. The past 0.4 Ma are characterized by strong SSST variations, of up to 8°C, between glacials and interglacials. Only during the climatic optima (stages 11.3, 9.3, 7.5, 7.1, 5.5, and the early Holocene), SSST exceeded present SSST at the core locality (10.2°C). Although the carbonate dissolution record exhibits high variability during the Pleistocene, it can be shown that SSST estimates were not significantly biased. The Mid-Brunhes dissolution cycle as well as the Mid-Pleistocene enhanced carbonate preservation appear to belong to a global long-term variability in carbonate preservation.
Resumo:
Estimates of summer sea surface temperatures (SSSTs) derived from planktic foraminiferal associations using the Modern Analog Technique and combined with isotopic analyses and determination of ice-rafted debris, mirror the Pleistocene evolution of the planktic Subantarctic surface waters in the Atlantic Ocean. The SSSTs indicate that the isotherms that define the modern polar front zone and Subantarctic front, were located at more northerly latitudes (up to 7°) during most of the investigated period, which covers the past 550 kyr. Exceptions are during climatic optima in the early Holocene, at marine isotope stages (MIS) 5.5, 7.1, 7.5, 9.3, and presumably during MIS 11.3 when SSSTs exceeded modern values by 1 -5°C. The close similarity between the SSST and the Vostok temperature indicates strong regional temperature correlation. Both records show that MIS 9.3 was the warmest period during the last 420 kyr whereas SSSTs obtained for MIS 11.3 are overestimated due to strong carbonate dissolution. Spectral analysis corroborates that the initiation of warming in southern high latitudes heralds the start of deglaciation on the Northern Hemisphere.
Resumo:
Through the processes of the biological pump, carbon is exported to the deep ocean in the form of dissolved and particulate organic matter. There are several ways by which downward export fluxes can be estimated. The great attraction of the 234Th technique is that its fundamental operation allows a downward flux rate to be determined from a single water column profile of thorium coupled to an estimate of POC/234Th ratio in sinking matter. We present a database of 723 estimates of organic carbon export from the surface ocean derived from the 234Th technique. Data were collected from tables in papers published between 1985 and 2013 only. We also present sampling dates, publication dates and sampling areas. Most of the open ocean Longhurst provinces are represented by several measurements. However, the Western Pacific, the Atlantic Arctic, South Pacific and the South Indian Ocean are not well represented. There is a variety of integration depths ranging from surface to 220m. Globally the fluxes ranged from -22 to 125 mmol of C/m**2/d. We believe that this database is important for providing new global estimate of the magnitude of the biological carbon pump.
Resumo:
Over 30 first and last occurrence (FO and LO, respectively) planktonic foraminifer datums were recognized from the Oligocene-Miocene section of Ocean Drilling Program (ODP) Site 1148. Most datum levels occur in similar order as, and are by correlation as probably synchronous with, their open-ocean records. Several datum levels represent local bioevents resulting from dissolution and Site 1148's unique paleoceanographic setting in the northern South China Sea. An age of 9.5-9.8 Ma is estimated for the local LO of Globoquadrina dehiscens (257 meters composite depth [mcd]), whereas the local LO of Globorotalia fohsi s.l. (301 mcd) is projected to be at ~13.0 Ma and the local FO of Globigerinatella insueta (367 mcd) is projected to be at ~18.0 Ma. The combined planktonic foraminifer and nannofossil results indicate that the Oligocene-Miocene section at Site 1148 is not complete. Unconformities up to 2-3 m.y. in duration, occurring at and before the Oligocene/Miocene boundary (OHS1, OHS2, OHS3, and OHS4 = MHS1), are associated with slump deposits between 457 and 495 mcd that signal tectonic instability during the transition from rifting to spreading in the South China Sea. Shorter unconformities of <0.5 m.y. duration that truncate the Miocene section were more likely to have been caused by sea-bottom erosion as well as dissolution. A total of 12 Miocene unconformities, MHS1 through MHS12, are mainly affected by dissolution and an elevated carbonate compensation depth (CCD) during Miocene third-order glaciations recorded in deep-sea positive oxygen isotope Mi glaciation events. Respectively, they fall at ~457 mcd (MHS1 = Mi-1), 407 mcd (MHS2 = Mi-1a), 385 mcd (MHS3 = Mi-1aa), 366 mcd (MHS4 = Mi-1b), 358 mcd (MHS5 = MLi-1), 333 mcd (MHS6 = Mi-2), 318 mcd (MHS7 = MSi-1), 308 mcd (MHS8 = Mi-3), 295 mcd (MHS9 = Mi-4), 288 mcd (MHS10 = Mi-5), 256 mcd (MHS11 = Mi-6), and 250 mcd (MHS12 = Mi-7). The correlation of these unconformities with Mi events indicates that some related driving mechanisms have been operating, causing deepwater circulation changes concomitantly in world oceans and in the marginal South China Sea.
Resumo:
The Cretaceous Equatorial Atlantic Gateway between the Central and South Atlantic basins is of interest not only for paleoceanographic and paleoclimatic studies, but also because it provided particularly favourable conditions for the accumulation and preservation of organic-rich sediments. Deposition of carbonaceous sediments along the Côte d'Ivoire-Ghana Transform Margin (Ocean Drilling Program Leg 159) was intimately linked to the plate tectonic and paleoceanographic evolution of this gateway. Notably, the formation of a marginal basement ridge on the southeastern border of the transform margin provided an efficient shelter of the landward Deep Ivorian Basin against erosive and potentially oxidizing currents. Different subsidence histories across the transform margin were responsible for the development of distinct depositional settings on the crest and on both sides of the basement ridge. Whereas the southern, oceanward flank of the basement ridge was characterized by rapid, continuous deepening since last Albian-early Cenomanian, marine sedimentation on the northern, landward flank was interrupted by a period of uplift and erosion in the late Albian, and rapid subsidence started after the early Coniacian. Organic-rich sediments occur throughout almost the entire Cretaceous section, but hydrogen-rich marine black shales were exclusively recovered from core sections above an uplift-related unconformity. These black shales formed when separation of Africa and South America was sufficient to allow permanent oceanic midwater exchange after the late Albian. Four periods of black shale accumulation are recovered, some of them are correlated with the global oceanic anoxic events: in the last Albian-earliest Cenomanian, at the Cenomanian-Turronian boundary, during the middle Coniacian-early Campanian, and in the mid-Maastrichtian. These periods were characterized by increasing carbon flux to the seafloor, induced by enhanced palaeoproductivity and intensified supply of terrestrial organic matter. Black shale depostion appears to be intimately linked to periods of rising or maximum eustatic sea level and to the expansion of the oxygen minimum zone, as indicated by foraminiferal biofacies. Intervals between black shales units, in contrast, indicate a shrinking oxygen minimum zone and enhanced detrital flux rates, probably related to lowering sea level. Upper Cretaceous detritral limestones with high porosities may provide excellent hydrocarbon reservoirs, alsthough their areal extent appears to be limited. Palaeogene porcellanites, capped by Neogene pelagic marls and clays, extend over a wider area and max provide another target for hydrocarbon exploration.
Resumo:
Hydrographers have traditionally referred to the nearshore area as the "white ribbon" area due to the challenges associated with the collection of elevation data in this highly dynamic transitional zone between terrestrial and marine environments. Accordingly, available information in this zone is typically characterised by a range of datasets from disparate sources. In this paper we propose a framework to 'fill' the white ribbon area of a coral reef system by integrating multiple elevation and bathymetric datasets acquired by a suite of remote-sensing technologies into a seamless digital elevation model (DEM). A range of datasets are integrated, including field-collected GPS elevation points, terrestrial and bathymetric LiDAR, single and multibeam bathymetry, nautical chart depths and empirically derived bathymetry estimations from optical remote sensing imagery. The proposed framework ranks data reliability internally, thereby avoiding the requirements to quantify absolute error and results in a high resolution, seamless product. Nested within this approach is an effective spatially explicit technique for improving the accuracy of bathymetry estimates derived empirically from optical satellite imagery through modelling the spatial structure of residuals. The approach was applied to data collected on and around Lizard Island in northern Australia. Collectively, the framework holds promise for filling the white ribbon zone in coastal areas characterised by similar data availability scenarios. The seamless DEM is referenced to the horizontal coordinate system MGA Zone 55 - GDA 1994, mean sea level (MSL) vertical datum and has a spatial resolution of 20 m.
Resumo:
Government agencies responsible for riparian environments are assessing the combined utility of field survey and remote sensing for mapping and monitoring indicators of riparian zone condition. The objective of this work was to compare the Tropical Rapid Appraisal of Riparian Condition (TRARC) method to a satellite image based approach. TRARC was developed for rapid assessment of the environmental condition of savanna riparian zones. The comparison assessed mapping accuracy, representativeness of TRARC assessment, cost-effectiveness, and suitability for multi-temporal analysis. Two multi-spectral QuickBird images captured in 2004 and 2005 and coincident field data covering sections of the Daly River in the Northern Territory, Australia were used in this work. Both field and image data were processed to map riparian health indicators (RHIs) including percentage canopy cover, organic litter, canopy continuity, stream bank stability, and extent of tree clearing. Spectral vegetation indices, image segmentation and supervised classification were used to produce RHI maps. QuickBird image data were used to examine if the spatial distribution of TRARC transects provided a representative sample of ground based RHI measurements. Results showed that TRARC transects were required to cover at least 3% of the study area to obtain a representative sample. The mapping accuracy and costs of the image based approach were compared to those of the ground based TRARC approach. Results proved that TRARC was more cost-effective at smaller scales (1-100km), while image based assessment becomes more feasible at regional scales (100-1000km). Finally, the ability to use both the image and field based approaches for multi-temporal analysis of RHIs was assessed. Change detection analysis demonstrated that image data can provide detailed information on gradual change, while the TRARC method was only able to identify more gross scale changes. In conclusion, results from both methods were considered to complement each other if used at appropriate spatial scales.
Resumo:
The Firenzuola turbidite system formed during a paroxysmal phase of thrust propagation, involving the upper Serravallian deposits of the Marnoso-arenacea Formation (MAF). During this phase the coeval growth of two major tectonic structures, the M. Castellaccio thrust and the Verghereto high, played a key role, causing a closure of the inner basin and a coeval shift of the depocentre to the outer basin. This work focuses on this phase of fragmentation of the MAF basin; it is based on a new detailed high-resolution stratigraphic framework, which was used to determine the timing of growth of the involved structures and their direct influence on sediment dispersal and on the lateral and vertical turbidite facies distribution. The Firenzuola turbidite system stratigraphy is characterized by the occurrence of mass-transport complexes (MTCs) and thick sandstone accumulation in the depocentral area, which passes to finer drape over the structural highs; the differentiation between these two zones increases over time and ends with the deposition of marly units over the structural highs and the emplacement of the Visignano MTC. According to the stratigraphic pattern and turbidite facies characteristics, the Firenzuola System has been split into two phases, namely Firenzuola I and Firenzuola II: the former is quite similar to the underlying deposits, while the latter shows the main fragmentation phase, testifying the progressive isolation of the inner basin and a coeval shift of the depocentre to the outer basin. The final stratigraphic and sedimentological dataset has been used to create a quantitative high-resolution 3D facies distribution using the Petrel software platform. This model allows a detailed analysis of lateral and vertical facies variations that can be exported to several reservoirs settings in hydrocarbon exploration and exploitation areas, since facies distributions and geometries of the reservoir bodies of many sub-surface turbidite basins show a significant relationship to the syndepositional structural activity, but are beyond seismic resolution.
Resumo:
The mode in which a lithosphere plate supports overlying topography is greatly driven by the strength of the plate. By analyzing the geophysical signature of lithosphere flexure, in the space and spectral domains, the strength of the plates that support the north Andean mountains and adjacent basins, and the topography of Kenya was investigated. In addition, the effect of windowing on elastic thickness estimates obtained via the coherence method was evaluated. ^ The coherence between the topography and Bouguer gravity spectra of northern South America suggests that the average elastic thickness of the lithosphere is 30 km. Although lateral variations were not resolved by the coherence implementation, these became apparent by modeling the foreland stratigraphy of the Llanos, Barinas and Maracaibo sub-Andean basins. Flexural models reveal a zone of lithosphere weakness beneath the eastern flank of the Eastern Cordillera and western flank of the Venezuelan Andes. The gravity anomaly calculated from these models is consistent with the observed Bouguer gravity anomaly. This zone of weakness appears to separate the strong, old Guyana shield lithosphere from the weaker and probably younger Andean lithosphere. The zone of weakness may correspond to a Paleozoic feature at the western margin of cratonic South America, or a Mesozoic rift arm that weakened the proto-Andean lithosphere. ^ Using synthetic data as well as the northern South America topography and gravity, this study demonstrates that lithosphere strength calculated from the coherence of mirrored data may overestimate the true lithosphere strength. As a result, many lithosphere plates may be weaker than currently thought. In light of this observation, gravity and topography data from Kenya were reevaluated using multitaper spectral techniques. The elastic thickness of this plate, currently undergoing rifting, was estimated at 7 to 8 km, a factor of 2 less than previously estimated. These estimates suggest that despite intense fracturing and sustained tensile stresses, continental lithosphere plates undergoing rifting are able to retain some strength. ^
Resumo:
The Andean Southern Volcanic Zone (SVZ) is a vast and complex continental arc that has been studied extensively to provide an understanding of arc-magma genesis, the origin and chemical evolution of the continental crust, and geochemical compositions of volcanic products. The present study focuses on distinguishing the magma/sub-arc crustal interaction of eruptive products from the Azufre-Planchon-Peteroa (APP 35°15'S) volcanic center and other major centers in the Central SVZ (CSVZ 37°S–42°S), Transitional SVZ (TSVZ 34.3–37.0°S), and Northern SVZ (NSVZ 33°S–34°30'S). New Hf and Nd isotopic and trace element data for SVZ centers are consistent with former studies that these magmas experienced variable depths of crystal fractionation, and that crustal assimilation is restricted to the lower crustal depths with an apparent role of garnet. Thermobarometric calculations applied to magma compositions constrain the depth of magma separation from mantle sources in all segments of the SVZ to(70-90 km). Magmatic separation at the APP complex occurs at an average depth of ~50 km which is confined to the mantle lithosphere and the base of the crust suggesting localized thermal abrasion both reservoirs. Thermobarometric calculations indicate that CSVZ primary magmas arise from a similar average depth of (~54 km) which confines magma separation to the asthenospheric mantle. The northwards along-arc Sr-Nd-Hf isotopic data and LREE enrichment accompanied with HREE depletion of SVZ mafic magmas correlates well with northward increasing crustal thickness and decreasing primary melt separation from mantle source regions indicating an increased involvement of lower crustal components in SVZ magma petrogenesis. ^ The study concludes that the development of mature subduction zones over millions of years of continuous magmatism requires that mafic arc derived melts stagnate at lower crustal levels due to density similarities and emplace at lower crustal depths. Basaltic underplating creates localized hot zone environments below major magmatic centers. These regions of high temperature/partial melting, and equilibration with underplated mafic rocks provides the mechanism that controls trace element and isotopic variability of primary magmas of the TSVZ and NSVZ from their baseline CSVZ-like precursors.^
Resumo:
Petrological, mineralogical and chemical investigations of marine manganese nodules from the West Pacific revealed the intimate relation between the chemical and mineral compositions and the remarkable preferential partitioning of metal elements in the ferromanganese minerals. The microscopic observations of textures of manganese nodules tell the growth history of manganese nodules and the formation conditions of ferromanganese minerals. Chemical compositions of nodules from Komahashi-Daini Seamount are very similar to those of the nodules from marginal banks and seamounts. Compositional variations in the bulk composition of nodules collected from the same dredge haul are considerably small, suggesting the similarity of the growth history of individual nodules, although the contents of metal elements vary remarkably from layer to layer in a single nodule.
Resumo:
The terrigenous sediment proportion of the deep sea sediments from off Northwest Africa has been studied in order to distinguish between the aeolian and the fluvial sediment supply. The present and fossil Saharan dust trajectories were recognized from the distribution patterns of the aeolian sediment. The following timeslices have been investigated: Present, 6,000, 12,000 and 18,000 y. B. P. Furthermore, the quantity of dust deposited off the Saharan coast has been estimated. For this purpose, 80 surface sediment samples and 34 sediment cores have been analysed. The stratigraphy of the cores has been achieved from oxygen isotopic curves, 14C-dating, foraminiferal transfer temperatures, and carbonate contents. Silt sized biogenic opal generally accounts for less than 2 % of the total insoluble sediment proportion. Only under productive upwelling waters and off river mouths, the opal proportion exceeds 2 % significantly. The modern terrigenous sediment from off the Saharan coast is generally characterized by intensely stained quartz grains. They indicate an origin from southern Saharan and Sahelian laterites, and a zonal aeolian transport in midtropospheric levels, between 1.5 an 5.5 km, by 'Harmattan' Winds. The dust particles follow large outbreaks of Saharan air across the African coast between 15° and 21° N. Their trajectories are centered at about 18° N and continue further into a clockwise gyre situated south of the Canary Islands. This course is indicated by a sickle-shaped tongue of coarser grain sizes in the deep-sea sediment. Such loess-sized terrigenous particles only settle within a zone extending to 700 km offshore. Fine silt and clay sized particles, with grain sizes smaller than 10- 15 µm, drift still further west and can be traced up to more than 4,000 km distance from their source areas. Additional terrigenous silt which is poor in stained quartz occurs within a narrow zone off the western Sahara between 20° and 27° N only. It depicts the present dust supply by the trade winds close to the surface. The dust load originates from the northwestern Sahara, the Atlas Mountains and coastal areas, which contain a particularly low amount of stained quartz. The distribution pattern of these pale quartz sediments reveals a SSW-dispersal of dust being consistent with the present trade wind direction from the NNE. In comparison to the sediments from off the Sahara and the deeper subtropical Atlantic, the sediments off river mouths, in particular off the Senegal river, are characterized by an additional input of fine grained terrigenous particles (< 6 µm). This is due to fluvial suspension load. The fluvial discharge leads to a relative excess of fine grained particles and is observed in a correlation diagram of the modal grain sizes of terrigenous silt with the proportion of fine fraction (< 6 µm). The aeolian sediment contribution by the Harmattan Winds strongly decreased during the Climatic Optimum at 6,000 y. B. P. The dust discharge of the trade winds is hardly detectable in the deep-sea sediments. This probably indicates a weakened atmospheric circulation. In contrast, the fluvial sediment supply reached a maximum, and can be traced to beyond Cape Blanc. Thus, the Saharan climate was more humid at 6,000 y B. P. A latitudinal shift of the Harmattan driven dust outbreaks cannot be observed. Also during the Glacial, 18,000 y. B. P., Harmattan dust transport crossed the African coast at latitudes of 15°-20° N. Its sediment load increased intensively, and markedly coarser grains spread further into the Atlantic Ocean. An expanded zone of pale-quart sediments indicates an enhanced dust supply by the trade winds blowing from the NE. No synglacial fluvial sediment contribution can be recognized between 12° and 30° N. This indicates a dry glacial climate and a strengthened stmospheric circulation over the Sahelian and Saharan region. The climatic transition pahes, at 12, 000 y. B. P., between the last Glacial and the Intergalcial, which is compareable to the Alerod in Europe, is characterized by an intermediate supply of terrigenous particles. The Harmattan dust transport wa weaker than during the Glacial. The northeasterly trade winds were still intensive. River supply reached a first postglacial maximum seaward of the Senegal river mouth. This indicates increasing humidity over the southern Sahara and a weaker atmospheric circulation as compared to the glacial. The accumulation rates of the terrigenous silt proportion (> 6 µm) decrcase exponentially with increasing distance from the Saharan coast. Those of the terrigenous fine fraction (< 6 µm) follow the same trend and show almost similar gradients. Accordingly, also the terrigenous fine fraction is believed to result predominantly from aeolian transport. In the Atlantic deep-sea sediments, the annual terrigenous sediment accumulation has fluctuated, from about 60 million tons p. a. during the Late Glacial (13,500-18,000 y. B. P, aeolian supply only) to about 33 million tons p. a. during the Holocene Climatic Optimum (6,000-9,000 y. B. P, mainly fluvial supply), when the river supply has reached a maximum, and to about 45 million tons p. a. during the last 4,000 years B. P. (fluvial supply only south of 18° N).