999 resultados para Nonlinear electrodynamics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents nonlinear finite element analysis of adhesively bonded joints considering the elastoviscoplastic constitutive model of the adhesive material and the finite rotation of the joint. Though the adherends have been assumed to be linearly elastic, the yielding of the adhesive is represented by a pressure sensitive modified von Mises yield function. The stress-strain relation of the adhesive is represented by the Ramberg-Osgood relation. Geometric nonlinearity due to finite rotation in the joint is accounted for using the Green-Lagrange strain tensor and the second Piola-Kirchhoff stress tensor in a total Lagrangian formulation. Critical time steps have been calculated based on the eigenvalues of the transition matrices of the viscoplastic model of the adhesive. Stability of the viscoplastic solution and time dependent behaviour of the joints are examined. A parametric study has been carried out with particular reference to peel and shear stress along the interface. Critical zones for failure of joints have been identified. The study is of significance in the design of lap joints as well as on the characterization of adhesive strength. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics of a feedback-controlled rigid robot is most commonly described by a set of nonlinear ordinary differential equations. In this paper we analyze these equations, representing the feedback-controlled motion of two- and three-degrees-of-freedom rigid robots with revolute (R) and prismatic (P) joints in the absence of compliance, friction, and potential energy, for the possibility of chaotic motions. We first study the unforced or inertial motions of the robots, and show that when the Gaussian or Riemannian curvature of the configuration space of a robot is negative, the robot equations can exhibit chaos. If the curvature is zero or positive, then the robot equations cannot exhibit chaos. We show that among the two-degrees-of-freedom robots, the PP and the PR robot have zero Gaussian curvature while the RP and RR robots have negative Gaussian curvatures. For the three-degrees-of-freedom robots, we analyze the two well-known RRP and RRR configurations of the Stanford arm and the PUMA manipulator respectively, and derive the conditions for negative curvature and possible chaotic motions. The criteria of negative curvature cannot be used for the forced or feedback-controlled motions. For the forced motion, we resort to the well-known numerical techniques and compute chaos maps, Poincare maps, and bifurcation diagrams. Numerical results are presented for the two-degrees-of-freedom RP and RR robots, and we show that these robot equations can exhibit chaos for low controller gains and for large underestimated models. From the bifurcation diagrams, the route to chaos appears to be through period doubling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements of the dc transport properties and the low-frequency conductivity noise in films of charge-ordered Nd0.5Ca0.5MnO3 grown on Si substrate reveal the existence of a threshold field in the charge-ordered regime beyond which strong nonlinear conduction sets in along with a large broad band conductivity noise. Threshold-dependent conduction disappears as T --> T-CO, the charge-ordering temperature. This observation suggests that the charge-ordered state gets depinned at the onset of the nonlinear conduction. (C) 1999 American Institute of Physics. [S0003-6951(99)05247-X].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differently hydrated sodium p-nitrophenolate (NPNa) crystals were obtained while growing them from different solvents such as methanol and water. Thermal analysis and powder X-ray diffraction studies were carried out on these crystals. Kurtz powder SHG technique was used for qualitative assessment of their nonlinear optical (NLO) activity. From the detailed single-crystal X-ray diffraction studies it is established that NPNa has three different forms, of which only one is found to possess NLO activity. Additionally, a new NLO active crystal was also found to grow from aqueous solution. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new series of twin nonlinear optical (NLO) molecules, having two 4-nitrophenol chromophores that are linked via a flexible polymethylene spacer of varying length [(CH2)(n), n = 1-12], were synthesized. Powder second harmonic generation measurements of these twin samples indicated a pronounced odd-even oscillation, with the odd twins exhibiting a high SHG value while the even ones gave no measurable SH signal. This behavior reflects the crystal packing preferences in such twin NLO systems that have odd and even numbers of atoms linking them - the even ones appear to prefer a centrosymmetric packing arrangement. The orientational/disordering dynamics of these twin NLO molecules, doped in a polymer (poly(methyl methacrylate)) matrix, has also been studied using SHG in electric field poled samples. Interestingly, the maximum attainable SH signal, chi((2)), in, the poled samples also showed an odd-even oscillation; the odd ones again having a higher value of chi((2)) This unprecedented odd-even oscillation in such molecularly doped systems is rationalized as being due to the intrinsically greater ease of a parallel alignment of the two chromophores in the twins with an odd spacer than in those with an even one. Further, the temporal stability of the SHG intensity at 70 degrees C, after the removal of the applied corona, was also studied. The relaxation of all the twin chromophores followed a biexponential decay; the characteristic relaxation time (tau(2)) for the slow decay component suggests that while the twin with a single methylene unit relaxes relatively slowly, the relaxation is significantly faster in cases where n = 2 and 3. In the twins with even longer spacer segments, the relaxation again becomes slower and reaches a saturation value. The observed minimum appears to reflect the interplay of two competing factors that affect the chromophore alignment in such twin systems, namely, the electrostatic repulsion between neighboring oriented dipoles and the intrinsic flexibility of the spacer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamics of the aircraft configuration considered in this paper show a unique characteristic in that there are no stable attractors in the entire high angle-of-attack flight envelope. As a result, once the aircraft has departed from the normal flight regime, no standard technique can be applied to recover the aircraft. In this paper, using feedback linearization technique, a nonlinear controller is designed at high angles of attack, which is engaged after the aircraft departs from normal flight regime. This controller stabilizes the aircraft into a stable spin. Then a set of synthetic pilot inputs is applied to cause an automatic transition from the spin equilibrium to low angles of attack where the second controller is connected. This controller is a normal gain-scheduled controller designed to have a large domain of attraction at low angles of attack. It traps the aircraft into a low angle-of-attack level flight. This entire concept of recovery has been verified using six-degrees-of-freedom nonlinear simulation. Feedback linearization technique used to design a controller ensures internal stability only if the nonlinear plant has stable zero dynamics. Because zero dynamics depend on the selection of outputs, a new method of choosing outputs is described to obtain a plant that has stable zero dynamics. Certain important aspects pertaining to the implementation of a feedback linearization-based controller are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis, crystal structures, linear and nonlinear optical properties of tris D-pi-A cryptand derivatives with C-3 symmetry are reported. Three fold symmetry inherent in the cryptand molecules has been utilized for designing these molecules. Molecular nonlinearities have been measured by hyper-Rayleigh scattering (HRS) experiments. Among the compounds studied, L-1 adopts non-centrosymmetric crystal structure. Compounds L-1, L-2, L-3 and L-4 show a measurable SHG powder signal. These molecules are more isotropic and have significantly higher melting points than the classical p-nitroaniline based dipolar NLO compounds, making them useful for further device applications. Besides, different acceptor groups can be attached to the cryptand molecules to modulate their NLO properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of aryl monosulphides and disulphides have been synthesized and characterized. Their molecular hyperpolarizability (beta) has been measured in solution with the hyper-Rayleigh Scattering technique and also calculated by semiempirical AMI method. The trend in the observed and calculated values of first hyperpolarizability of these compounds has been found to be in good agreement. These compounds show moderate P values and excellent transparency in the visible region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basic characteristic of a chaotic system is its sensitivity to the infinitesimal changes in its initial conditions. A limit to predictability in chaotic system arises mainly due to this sensitivity and also due to the ineffectiveness of the model to reveal the underlying dynamics of the system. In the present study, an attempt is made to quantify these uncertainties involved and thereby improve the predictability by adopting a multivariate nonlinear ensemble prediction. Daily rainfall data of Malaprabha basin, India for the period 1955-2000 is used for the study. It is found to exhibit a low dimensional chaotic nature with the dimension varying from 5 to 7. A multivariate phase space is generated, considering a climate data set of 16 variables. The chaotic nature of each of these variables is confirmed using false nearest neighbor method. The redundancy, if any, of this atmospheric data set is further removed by employing principal component analysis (PCA) method and thereby reducing it to eight principal components (PCs). This multivariate series (rainfall along with eight PCs) is found to exhibit a low dimensional chaotic nature with dimension 10. Nonlinear prediction employing local approximation method is done using univariate series (rainfall alone) and multivariate series for different combinations of embedding dimensions and delay times. The uncertainty in initial conditions is thus addressed by reconstructing the phase space using different combinations of parameters. The ensembles generated from multivariate predictions are found to be better than those from univariate predictions. The uncertainty in predictions is decreased or in other words predictability is increased by adopting multivariate nonlinear ensemble prediction. The restriction on predictability of a chaotic series can thus be altered by quantifying the uncertainty in the initial conditions and also by including other possible variables, which may influence the system. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present experimental investigation of a new reconstruction method for off-axis digital holographic microscopy (DHM). This method effectively suppresses the object auto-correlation, commonly called the zero-order term, from holographic measurements, thereby suppressing the artifacts generated by the intensities of the two beams employed for interference from complex wavefield reconstruction. The algorithm is based on non-linear filtering, and can be applied to standard DHM setups, with realistic recording conditions. We study the applicability of the technique under different experimental configurations, such as topographic images of microscopic specimens or speckle holograms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glass nanocomposites in the system (100 - x)Li2B4O7-xSrBi(2)Ta(2)O(9) (0 less than or equal to x less than or equal to 22.5, in molar ratio) were fabricated via a melt quenching technique followed by controlled heat-treatment. The as-quenched samples were confirmed to be glassy and amorphous by differential thermal analysis (DTA) and X-ray powder diffraction (XRD) techniques, respectively. The phase formation and crystallite size of the heat-treated samples (glass nanocomposites) were monitored by XRD and transmission electron microscopy (TEM). The relative permittivities (epsilon(tau)') of the glass nanocomposites for different compositions were found to lie in between that of the parent host glass (Li2B4O7) and strontium bismuth tantalate (SBT) ceramic in the frequency range 100 Hz-40 MHz at 300 K, whereas the dielectric loss (D) of the glass nanocomposite was less than that of both the parent phases. Among the various dielectric models employed to predict the effective relative permittivity of the glass nanocomposite, the one obtained using the Maxwell's model was in good agreement with the experimentally observed value. Impedance analysis was employed to rationalize the electrical behavior of the glasses and glass nanocomposites. The pyroelectric response of the glasses and glass nanocomposites was monitored as a function of temperature and the pyroelectric coefficient for glass and glass nanocomposite (x = 20) at 300 K were 27 muC m(-2) K-1 and 53 muC m(-2) K-1, respectively. The ferroelectric behavior of these glass nanocomposites was established by P vs. E hysteresis loop studies. The remnant polarization (P-r) of the glass nanocomposite increases with increase in SBT content. The coercive field (E-c) and P-r for the glass nanocomposite (x = 20) were 727 V cm(-1) and 0.527 muC cm(-2), respectively. The optical transmission properties of these glass nanocomposites were found to be composition dependent. The refractive index (n = 1.722), optical polarizability (am = 1.266 6 10 23 cm 3) and third-order nonlinear optical susceptibility (x(3) = 3.046 6 10(-21) cm(3)) of the glass nanocomposite (x = 15) were larger than those of the as-quenched glass. Second harmonic generation (SHG) was observed in transparent glass nanocomposites and the d(eff) for the glass nanocomposite (x = 20) was found to be 0.373 pm V-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(La0.667Ca0.333Mn1-xMO3-delta)-O-x (M = Mg, Li or Re) exhibit insulating behaviour and nonlinear current-voltage (J-E) relationship with voltage-limiting characteristics at temperatures below the ferromagnetic transition (T-c). The high current region is set in at field strengths <60 V/cm. Nonlinearity exponent, alpha in the relation J = kE(alpha) increases inversely with temperature. In presence of an external magnetic field, the J-E curves show higher current density at lower field strengths. Microstructural studies indicate that there is no segregation of secondary phases in the grain boundary regions. There is remarkable changes in p(T) as well as J-E curves with the grain size. Annealing studies in lower p(O2) atmospheres indicate that there is significant out-diffusion of oxygen ions through the grain boundary layer (GBL) regions creating oxygen vacancies in the GBL regions. The concentration of Mn4+ ions is lowered at the GBL due to oxygen vacancies, reducing the probability of hopping and resulting in insulating behaviour. Therefore an insulating barrier is introduced between two conducting grains and the carrier motion between the grains is inhibited. Thus below T-c, where sufficient increase in resistivity is observed the conduction may be arising as a result of spin dependent tunneling across the barrier. External electric field lowers the barrier height and establishes carrier transport across the barrier. Above certain field strength, barrier height diminishes significantly and thereby allowing large number of carriers for conduction, giving rise to highly nonlinear conductivity. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystallization behaviors of the glass with a composition of 25Li(2)O.25B(2)O(3).50GeO(2) corresponding to lithium borogermanate LiBGeO4 have been examined. It has been confirmed that the LiBGeO4 crystalline phase is formed at the surface of heat-treated glasses. The second harmonic (SH) generation is found from transparent surface crystallized glasses, demonstrating for the first time that the LiBGeO4 phase shows optical nonlinearity. The SH intensity of LiBGeO4 crystallites (powdered state) prepared through crystallization is about ten times as large as that of pulverized alpha-quartz. The SH intensity of transparent crystallized glasses (bulk state) with crystalline layers of 3-4.5 mum thickness increases with increasing heat treatment temperature (540-560degreesC) and time (1-6 h), and the maximum SH intensity among the samples studied is in the order of 1/10 in comparison with that of alpha-quartz single crystal. The transparent crystallized glass obtained by heat treatment at 550alphaC for 3 h exhibits a clear and fine Maker fringe pattern, indicating a highly orientation of LiBGeO4 crystals at the surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyruvate conversion to acetyl-CoA by the pyruvate dehydrogenase (PDH) multienzyme complex is known as a key node in affecting the metabolic fluxes of animal cell culture. However, its possible role in causing possible nonlinear dynamic behavior such as oscillations and multiplicity of animal cells has received little attention. In this work, the kinetic and dynamic behavior of PDH of eucaryotic cells has been analyzed by using both in vitro and simplified in vivo models. With the in vitro model the overall reaction rate (v(1)) of PDH is shown to be a nonlinear function of pyruvate concentration, leading to oscillations under certain conditions. All enzyme components affect v, and the nonlinearity of PDH significantly, the protein X and the core enzyme dihydrolipoamide acyltransferase (E2) being mostly predominant. By considering the synthesis rates of pyruvate and PDH components the in vitro model is expanded to emulate in vivo conditions. Analysis using the in vivo model reveals another interesting kinetic feature of the PDH system, namely, multiple steady states. Depending on the pyruvate and enzyme levels or the operation mode, either a steady state with high pyruvate decarboxylation rate or a steady state with significantly lower decarboxylation rate can be achieved under otherwise identical conditions. In general, the more efficient steady state is associated with a lower pyruvate concentration. A possible time delay in the substrate supply and enzyme synthesis can also affect the steady state to be achieved and lead's to oscillations under certain conditions. Overall, the predictions of multiplicity for the PDH system agree qualitatively well with recent experimental observations in animal cell cultures. The model analysis gives some hints for improving pyruavte metabolism in animal cell culture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Respiratory irregularity has been previously reported in patients with panic disorder using time domain measures. However, the respiratory signal is not entirely linear and a few previous studies used approximate entropy (APEN), a measure of regularity of time series. We have been studying APEN and other nonlinear measures including a measure of chaos, the largest Lyapunov exponent (LLE) of heart rate time series, in some detail. In this study, we used these measures of respiration to compare normal controls (n = 18) and patients with panic disorder (n = 22) in addition to the traditional time domain measures of respiratory rate and tidal volume. Methods: Respiratory signal was obtained by the Respitrace system using a thoracic and an abdominal belt, which was digitized at 500 Hz. Later, the time series were constructed at 4 Hz, as the highest frequency in this signal is limited to 0.5 Hz. We used 256 s of data (1,024 points) during supine and standing postures under normal breathing and controlled breathing at 12 breaths/min. Results: APEN was significantly higher in patients in standing posture during normal as well as controlled breathing (p = 0.002 and 0.02, respectively). LLE was also significantly higher in standing posture during normal breathing (p = 0.009). Similarly, the time domain measures of standard deviations and the coefficient of variation (COV) of tidal volume (TV) were significantly higher in the patient group (p = 0.02 and 0.004, respectively). The frequency of sighs was also higher in the patient group in standing posture (p = 0.02). In standing posture, LLE (p < 0.05) as well as APEN (p < 0.01) contributed significantly toward the separation of the two groups over and beyond the linear measure, i.e. the COV of TV. Conclusion: These findings support the previously described respiratory irregularity in patients with panic disorder and also illustrate the utility of nonlinear measures such as APEN and LLE as additional measures toward a better understanding of the abnormalities of respiratory physiology in similar patient populations as the correlation between LLE, APEN and some of the time domain measures only explained up to 50-60% of the variation. Copyright (C) 2002 S. Karger AG, Basel.