882 resultados para Nonlinear control theory
Resumo:
Self-similar optical pulses (or “similaritons”) of parabolic intensity profile can be found as asymptotic solutions of the nonlinear Schr¨odinger equation in a gain medium such as a fiber amplifier or laser resonator. These solutions represent a wide-ranging significance example of dissipative nonlinear structures in optics. Here, we address some issues related to the formation and evolution of parabolic pulses in a fiber gain medium by means of semi-analytic approaches. In particular, the effect of the third-order dispersion on the structure of the asymptotic solution is examined. Our analysis is based on the resolution of ordinary differential equations, which enable us to describe the main properties of the pulse propagation and structural characteristics observable through direct numerical simulations of the basic partial differential equation model with sufficient accuracy.
Resumo:
Material processing using high-intensity femtosecond (fs) laser pulses is a fast developing technology holding potential for direct writing of multi-dimensional optical structures in transparent media. In this work we re-examine nonlinear diffraction theory in context of fs laser processing of silica in sub-critical (input power less than the critical power of self-focusing) regime. We have applied well known theory, developed by Vlasov, Petrishev and Talanov, that gives analytical description of the evolution of a root-mean-square beam (not necessarily Gaussian) width RRMS(z) in medium with the Kerr nonlinearity.
Resumo:
Optimal stochastic controller pushes the closed-loop behavior as close as possible to the desired one. The fully probabilistic design (FPD) uses probabilistic description of the desired closed loop and minimizes Kullback-Leibler divergence of the closed-loop description to the desired one. Practical exploitation of the fully probabilistic design control theory continues to be hindered by the computational complexities involved in numerically solving the associated stochastic dynamic programming problem. In particular very hard multivariate integration and an approximate interpolation of the involved multivariate functions. This paper proposes a new fully probabilistic contro algorithm that uses the adaptive critic methods to circumvent the need for explicitly evaluating the optimal value function, thereby dramatically reducing computational requirements. This is a main contribution of this short paper.
Resumo:
The importance of “control variations” for obtaining local approximations of the reachable set of nonlinear control systems is well known. Heuristically, if one can construct control variations in all possible directions, then the considered control system is small-time locally controllable (STLC). Two concepts of control variations of higher order are introduced for the case of smooth control systems. The relation between these variations and the small-time local controllability is studied and a new sufficient STLC condition is proved.
Resumo:
A cascaded DC-DC boost converter is one of the ways to integrate hybrid battery types within a grid-tie inverter. Due to the presence of different battery parameters within the system such as, state-of-charge and/or capacity, a module based distributed power sharing strategy may be used. To implement this sharing strategy, the desired control reference for each module voltage/current control loop needs to be dynamically varied according to these battery parameters. This can cause stability problem within the cascaded converters due to relative battery parameter variations when using the conventional PI control approach. This paper proposes a new control method based on Lyapunov Functions to eliminate this issue. The proposed solution provides a global asymptotic stability at a module level avoiding any instability issue due to parameter variations. A detailed analysis and design of the nonlinear control structure are presented under the distributed sharing control. At last thorough experimental investigations are shown to prove the effectiveness of the proposed control under grid-tie conditions.
Resumo:
Successful implementation of fault-tolerant quantum computation on a system of qubits places severe demands on the hardware used to control the many-qubit state. It is known that an accuracy threshold Pa exists for any quantum gate that is to be used for such a computation to be able to continue for an unlimited number of steps. Specifically, the error probability Pe for such a gate must fall below the accuracy threshold: Pe < Pa. Estimates of Pa vary widely, though Pa ∼ 10−4 has emerged as a challenging target for hardware designers. I present a theoretical framework based on neighboring optimal control that takes as input a good quantum gate and returns a new gate with better performance. I illustrate this approach by applying it to a universal set of quantum gates produced using non-adiabatic rapid passage. Performance improvements are substantial comparing to the original (unimproved) gates, both for ideal and non-ideal controls. Under suitable conditions detailed below, all gate error probabilities fall by 1 to 4 orders of magnitude below the target threshold of 10−4. After applying the neighboring optimal control theory to improve the performance of quantum gates in a universal set, I further apply the general control theory in a two-step procedure for fault-tolerant logical state preparation, and I illustrate this procedure by preparing a logical Bell state fault-tolerantly. The two-step preparation procedure is as follow: Step 1 provides a one-shot procedure using neighboring optimal control theory to prepare a physical qubit state which is a high-fidelity approximation to the Bell state |β01⟩ = 1/√2(|01⟩ + |10⟩). I show that for ideal (non-ideal) control, an approximate |β01⟩ state could be prepared with error probability ϵ ∼ 10−6 (10−5) with one-shot local operations. Step 2 then takes a block of p pairs of physical qubits, each prepared in |β01⟩ state using Step 1, and fault-tolerantly prepares the logical Bell state for the C4 quantum error detection code.
Resumo:
Currently the uncertain system has attracted much academic community from the standpoint of scientific research and also practical applications. A series of mathematical approaches emerge in order to troubleshoot the uncertainties of real physical systems. In this context, the work presented here focuses on the application of control theory in a nonlinear dynamical system with parametric variations in order and robustness. We used as the practical application of this work, a system of tanks Quanser associates, in a configuration, whose mathematical model is represented by a second order system with input and output (SISO). The control system is performed by PID controllers, designed by various techniques, aiming to achieve robust performance and stability when subjected to parameter variations. Other controllers are designed with the intention of comparing the performance and robust stability of such systems. The results are obtained and compared from simulations in Matlab-simulink.
Resumo:
Time-optimal response is an important and sometimes necessary characteristic of dynamic systems for specific applications. Power converters are widely used in different electrical systems and their dynamic response will affect the whole system. In many electrical systems like microgrids or voltage regulators which supplies sensitive loads fast dynamic response is a must. Minimum time is the fastest converter to compensate the step output reference or load change. Boost converters as one of the wildly used power converters in the electrical systems are aimed to be controlled in optimal time in this study. Linear controllers are not able to provide the optimal response for a boost converter however they are still useful and functional for other applications like reference tracking or stabilization. To obtain the fastest possible response from boost converters, a nonlinear control approach based on the total energy of the system is studied in this research. Total energy of the system considers as the basis for developing the presented method, since it is easy and accurate to measure besides that the total energy of the system represents the actual operating condition of the boost converter. The detailed model of a boost converter is simulated in MATLAB/Simulink to achieve the time optimal response of the boost converter by applying the developed method. The simulation results confirmed the ability of the presented method to secure the time optimal response of the boost converter under four different scenarios.
Resumo:
Irrigation canals are complex hydraulic systems difficult to control. Many models and control strategies have already been developed using linear control theory. In the present study, a PI controller is developed and implemented in a brand new prototype canal and its features evaluated experimentally. The base model relies on the linearized Saint-Venant equations which is compared with a reservoir model to check its accuracy. This technique will prove its capability and versatility in tuning properly a controller for this kind of systems.
Resumo:
This paper deals with the phase control for Neurospora circadian rhythm. The nonlinear control, given by tuning the parameters (considered as controlled variables) in Neurospora dynamical model, allows the circadian rhythms tracking a reference one. When there are many parameters (e.g. 3 parameters in this paper) and their values are unknown, the adaptive control law reveals its weakness since the parameters converging and control objective must be guaranteed at the same time. We show that this problem can be solved using the genetic algorithm for parameters estimation. Once the unknown parameters are known, the phase control is performed by chaos synchronization technique.
Resumo:
Continuous learning and development has become increasingly important in the information age. However, employees with limited formal education in lower status occupations may be disadvantaged in their opportunities for development, as their jobs tend to require more limited knowledge and skills. In mature age, such workers may be subject to cumulative disadvantage with respect to work related learning and development, as well as negative stereotyping. This thesis concerns work related learning and development from a lifespan development psychology perspective. Development across the lifespan is grounded in biocultural co-constructivism. That is, the reciprocal influences of the individual and environment produce change in the individual. Existing theories and models of adaptive development attempt to explain how developmental resources are allocated across the lifespan. These included the Meta- theory of Selective Optimisation with Compensation, Dual Process Model of Self Regulation, and Developmental Regulation via Optimisation and Primary and Secondary Control. These models were integrated to create the Model of Adaptive Development for Work Related Learning. The Learning and Development Survey (LDS) was constructed to measure the hypothesised processes of adaptive development for work related learning, which were individual goal selection, individual goal engagement, individual goal disengagement, organisational opportunities (selection and engagement), and organisational constraints. Data collection was undertaken in two phases: the pilot study and the main study. The objective of the pilot study was to test the LDS on a target population of 112 employees from a local government organisation. Exploratory factor analysis reduced the pilot version of the survey to 38 items encompassing eight constructs which covered the processes of the model of adaptive development for work related learning. In the main study, the Revised Learning and Development Survey (R-LDS) was administered to another group of 137 employees from the local government organisation, as well as 110 employees from a private healthcare organisation. The purpose of the main study was to validate the R-LDS on two different groups to provide evidence of stability, and compare survey scores according to age and occupational status to determine construct validity. Findings from the main study indicated that only four constructs of the R-LDS were stable, which were organisational opportunities – selection, individual goal engagement, organisational constraints – disengagement and organisational opportunities – engagement. In addition, MANOVA studies revealed that the demographic variables affected organisational opportunities and constraints in the workplace, although individual goal engagement was not influenced by age. The findings from the pilot and main study partially supported the model of adaptive development for work related learning. Given that only four factors displayed adequate reliability in terms of internal consistency and stability, the findings suggest that individual goal selection and individual goal disengagement are less relevant to work related learning and development. Some recent research which emerged during the course of the current study has suggested that individual goal selection and individual goal disengagement are more relevant when goal achievement is impeded by biological constraints such as ageing. However, correlations between the retained factors support the model of adaptive development for work related learning, and represent the role of biocultural co-constructivism in development. Individual goal engagement was positively correlated with both opportunity factors (selection and engagement), while organisational constraints – disengagement was negatively correlated with organisational opportunities – selection. Demographic findings indicated that higher occupational status was associated with more opportunities for development. Age was associated with fewer opportunities or greater constraints for development, especially for lower status workers.
Resumo:
The theory of nonlinear dyamic systems provides some new methods to handle complex systems. Chaos theory offers new concepts, algorithms and methods for processing, enhancing and analyzing the measured signals. In recent years, researchers are applying the concepts from this theory to bio-signal analysis. In this work, the complex dynamics of the bio-signals such as electrocardiogram (ECG) and electroencephalogram (EEG) are analyzed using the tools of nonlinear systems theory. In the modern industrialized countries every year several hundred thousands of people die due to sudden cardiac death. The Electrocardiogram (ECG) is an important biosignal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computerbased intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and four classes of arrhythmia. This thesis presents some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. Several features were extracted from the HOS and subjected an Analysis of Variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, seven features were extracted from the heart rate signals using HOS and fed to a support vector machine (SVM) for classification. The performance evaluation protocol in this thesis uses 330 subjects consisting of five different kinds of cardiac disease conditions. The classifier achieved a sensitivity of 90% and a specificity of 89%. This system is ready to run on larger data sets. In EEG analysis, the search for hidden information for identification of seizures has a long history. Epilepsy is a pathological condition characterized by spontaneous and unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic early detection of the seizure onsets would help the patients and observers to take appropriate precautions. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, these features are used to train both a Gaussian mixture model (GMM) classifier and a Support Vector Machine (SVM) classifier. Results show that the classifiers were able to achieve 93.11% and 92.67% classification accuracy, respectively, with selected HOS based features. About 2 hours of EEG recordings from 10 patients were used in this study. This thesis introduces unique bispectrum and bicoherence plots for various cardiac conditions and for normal, background and epileptic EEG signals. These plots reveal distinct patterns. The patterns are useful for visual interpretation by those without a deep understanding of spectral analysis such as medical practitioners. It includes original contributions in extracting features from HRV and EEG signals using HOS and entropy, in analyzing the statistical properties of such features on real data and in automated classification using these features with GMM and SVM classifiers.
Resumo:
In this paper, we present a control strategy design technique for an autonomous underwater vehicle based on solutions to the motion planning problem derived from differential geometric methods. The motion planning problem is motivated by the practical application of surveying the hull of a ship for implications of harbor and port security. In recent years, engineers and researchers have been collaborating on automating ship hull inspections by employing autonomous vehicles. Despite the progresses made, human intervention is still necessary at this stage. To increase the functionality of these autonomous systems, we focus on developing model-based control strategies for the survey missions around challenging regions, such as the bulbous bow region of a ship. Recent advances in differential geometry have given rise to the field of geometric control theory. This has proven to be an effective framework for control strategy design for mechanical systems, and has recently been extended to applications for underwater vehicles. Advantages of geometric control theory include the exploitation of symmetries and nonlinearities inherent to the system. Here, we examine the posed inspection problem from a path planning viewpoint, applying recently developed techniques from the field of differential geometric control theory to design the control strategies that steer the vehicle along the prescribed path. Three potential scenarios for surveying a ship?s bulbous bow region are motivated for path planning applications. For each scenario, we compute the control strategy and implement it onto a test-bed vehicle. Experimental results are analyzed and compared with theoretical predictions.