975 resultados para Noncommutative Algebra
Resumo:
Nella tesi viene fornita una costruzione dell'algebra esterna di un K-spazio vettoriale, alcune conseguenze principali come la derivazione in maniera traspente del determinante di e alcune sue proprietà e l'introduzione del concetto di Grassmanniana.
Resumo:
Questa tesi descrive alcune proprietà delle algebre monounarie finite e si propone di trovare un metodo per classificarle. Poiché infatti il numero di algebre di ordine n aumenta notevolmente con la crescita di quest’ultimo, si cerca un modo per suddividerle in classi d’isomorfismo. In particolare, dal momento che anche il numero di queste classi cresce esponenzialmente all’aumentare di n, utilizziamo una classificazione meno fine dell’isomorfismo basata sul polinomio strutturale. Grazie a questo strumento infatti è possibile risalire a famiglie di grafi orientati associati ad algebre monounarie, a due a due non isomorfi, ricavando perciò alcune specifiche caratteristiche di quest’ultime. Infine, calcolando l’ordine di gruppi particolari, detti automorfi, si può ottenere l’effettivo numero di algebre aventi un dato polinomio strutturale.
Resumo:
A previously presented algorithm for the reconstruction of bremsstrahlung spectra from transmission data has been implemented into MATHEMATICA. Spectra vectorial algebra has been used to solve the matrix system A * F = T. The new implementation has been tested by reconstructing photon spectra from transmission data acquired in narrow beam conditions, for nominal energies of 6, 15, and 25 MV. The results were in excellent agreement with the original calculations. Our implementation has the advantage to be based on a well-tested mathematical kernel. Furthermore it offers a comfortable user interface.
Resumo:
We define an applicative theory of truth TPT which proves totality exactly for the polynomial time computable functions. TPT has natural and simple axioms since nearly all its truth axioms are standard for truth theories over an applicative framework. The only exception is the axiom dealing with the word predicate. The truth predicate can only reflect elementhood in the words for terms that have smaller length than a given word. This makes it possible to achieve the very low proof-theoretic strength. Truth induction can be allowed without any constraints. For these reasons the system TPT has the high expressive power one expects from truth theories. It allows embeddings of feasible systems of explicit mathematics and bounded arithmetic. The proof that the theory TPT is feasible is not easy. It is not possible to apply a standard realisation approach. For this reason we develop a new realisation approach whose realisation functions work on directed acyclic graphs. In this way, we can express and manipulate realisation information more efficiently.
Resumo:
An elementary algebra identifies conceptual and corresponding applicational limitations in John Kemeny and Paul Oppenheim’s (K-O) 1956 model of theoretical reduction in the sciences. The K-O model was once widely accepted, at least in spirit, but seems afterward to have been discredited, or in any event superceeded. Today, the K-O reduction model is seldom mentioned, except to clarify when a reduction in the Kemeny-Oppenheim sense is not intended. The present essay takes a fresh look at the basic mathematics of K-O comparative vocabulary theoretical term reductions, from historical and philosophical standpoints, as a contribution to the history of the philosophy of science. The K-O theoretical reduction model qualifies a theory replacement as a successful reduction when preconditions of explanatory adequacy and comparable systematicization are met, and there occur fewer numbers of theoretical terms identified as replicable syntax types in the most economical statement of a theory’s putative propositional truths, as compared with the theoretical term count for the theory it replaces. The challenge to the historical model developed here, to help explain its scope and limitations, involves the potential for equivocal theoretical meanings of multiple theoretical term tokens of the same syntactical type.
Resumo:
von Fr. Adrian Köcher
Resumo:
Von J. Ineichen, Professor der Physik am Lyceum zu Luzern
Resumo:
This paper analyzes the role of Computer Algebra Systems (CAS) in a model of learning based on competences. The proposal is an e-learning model Linear Algebra course for Engineering, which includes the use of a CAS (Maxima) and focuses on problem solving. A reference model has been taken from the Spanish Open University. The proper use of CAS is defined as an indicator of the generic ompetence: Use of Technology. Additionally, we show that using CAS could help to enhance the following generic competences: Self Learning, Planning and Organization, Communication and Writing, Mathematical and Technical Writing, Information Management and Critical Thinking.
Resumo:
This project investigates the utility of differential algebra (DA) techniques applied to the problem of orbital dynamics with initial uncertainties in the orbital determination of the involved bodies. The use of DA theory allows the splitting of a common Monte Carlo simulation in two parts: the generation of a Taylor map of the final states with regard to the perturbation in the initial coordinates, and the evaluation of the map for many points. A propagator is implemented exploiting DA techniques, and tested in the field of asteroid impact risk monitoring with the potentially hazardous 2011 AG5 and 2007 VK184 as test cases. Results show that the new method is able to simulate 2.5 million trajectories with a precision good enough for the impact probability to be accurately reproduced, while running much faster than a traditional Monte Carlo approach (in 1 and 2 days, respectively).
Resumo:
This work describes an experience with a methodology for learning based on competences in Linear Algebra for engineering students. The experience has been based in autonomous team work of students. DERIVE tutorials for Linear Algebra topics are provided to the students. They have to work with the tutorials as their homework. After, worksheets with exercises have been prepared to be solved by the students organized in teams, using DERIVE function previously defined in the tutorials. The students send to the instructor the solution of the proposed exercises and they fill a survey with their impressions about the following items: ease of use of the files, usefulness of the tutorials for understanding the mathematical topics and the time spent in the experience. As a final work, we have designed an activity directed to the interested students. They have to prepare a project, related with a real problem in Science and Engineering. The students are free to choose the topic and to develop it but they have to use DERIVE in the solution. Obviously they are guided by the instructor. Some examples of activities related with Orthogonal Transformations will be presented.
Resumo:
A toolbox is a set of procedures taking advantage of the computing power and graphical capacities of a CAS. With these procedures the students can solve math problems, apply mathematics to engineering or simply reinforce the learning of certain mathematical concepts. From the point of view of their construction, we can consider two types of toolboxes: (i) the closed box, built by the teacher, in which the utility files are provided to the students together with the respective tutorials and several worksheets with proposed exercises and problems,
Resumo:
Marca tip. en v. de port. y en v. de última h.
Resumo:
A relatively simple definition of a locally compact quantum group in the C*-algebra setting will be explained as it was recently obtained by the authors. At the same time, we put this definition in the historical and mathematical context of locally compact groups, compact quantum groups, Kac algebras, multiplicative unitaries, and duality theory.