912 resultados para Non-targeted effects
Resumo:
The spatial distribution of self-employment in India: evidence from semiparametric geoadditive models, Regional Studies. The entrepreneurship literature has rarely considered spatial location as a micro-determinant of occupational choice. It has also ignored self-employment in developing countries. Using Bayesian semiparametric geoadditive techniques, this paper models spatial location as a micro-determinant of self-employment choice in India. The empirical results suggest the presence of spatial occupational neighbourhoods and a clear north–south divide in self-employment when the entire sample is considered; however, spatial variation in the non-agriculture sector disappears to a large extent when individual factors that influence self-employment choice are explicitly controlled. The results further suggest non-linear effects of age, education and wealth on self-employment.
Resumo:
Background Abnormalities in incentive decision making, typically assessed using the Iowa Gambling Task (IGT), have been reported in both schizophrenia (SZ) and bipolar disorder (BD). We applied the Expectancy-Valence (E-V) model to determine whether motivational, cognitive and response selection component processes of IGT performance are differentially affected in SZ and BD. Method Performance on the IGT was assessed in 280 individuals comprising 70 remitted patients with SZ, 70 remitted patients with BD and 140 age-, sex-and IQ-matched healthy individuals. Based on the E-V model, we extracted three parameters, 'attention to gains or loses', 'expectancy learning' and 'response consistency', that respectively reflect motivational, cognitive and response selection influences on IGT performance. Results Both patient groups underperformed in the IGT compared to healthy individuals. However, the source of these deficits was diagnosis specific. Associative learning underlying the representation of expectancies was disrupted in SZ whereas BD was associated with increased incentive salience of gains. These findings were not attributable to non-specific effects of sex, IQ, psychopathology or medication. Conclusions Our results point to dissociable processes underlying abnormal incentive decision making in BD and SZ that could potentially be mapped to different neural circuits. © 2012 Cambridge University Press.
Resumo:
This thesis is concerned with understanding how Emergency Management Agencies (EMAs) influence public preparedness for mass evacuation across seven countries. Due to the lack of cross-national research (Tierney et al., 2001), there is a lack of knowledge on EMAs perspectives and approaches to the governance of public preparedness. This thesis seeks to address this gap through cross-national research that explores and contributes towards understanding the governance of public preparedness. The research draws upon the risk communication (Wood et al., 2011; Tierney et al., 2001) social marketing (Marshall et al., 2007; Kotler and Lee, 2008; Ramaprasad, 2005), risk governance (Walker et al., 2010, 2013; Kuhlicke et al., 2011; IRGC, 2005, 2007; Renn et al., 2011; Klinke and Renn, 2012), risk society (Beck, 1992, 1999, 2002) and governmentality (Foucault, 1978, 2003, 2009) literature to explain this governance and how EMAs responsibilize the public for their preparedness. EMAs from seven countries (Belgium, Denmark, Germany, Iceland, Japan, Sweden, the United Kingdom) explain how they prepare their public for mass evacuation in response to different types of risk. A cross-national (Hantrais, 1999) interpretive research approach, using qualitative methods including semi-structured interviews, documents and observation, was used to collect data. The data analysis process (Miles and Huberman, 1999) identified how the concepts of risk, knowledge and responsibility are critical for theorising how EMAs influence public preparedness for mass evacuation. The key findings grounded in these concepts include: - Theoretically, risk is multi-functional in the governance of public preparedness. It regulates behaviour, enables surveillance and acts as a technique of exclusion. - EMAs knowledge and how this influenced their assessment of risk, together with how they share the responsibility for public preparedness across institutions and the public, are key to the governance of public preparedness for mass evacuation. This resulted in a form of public segmentation common to all countries, whereby the public were prepared unequally. - EMAs use their prior knowledge and assessments of risk to target public preparedness in response to particular known hazards. However, this strategy places the non-targeted public at greater risk in relation to unknown hazards, such as a man-made disaster. - A cross-national conceptual framework of four distinctive governance practices (exclusionary, informing, involving and influencing) are utilised to influence public preparedness. - The uncertainty associated with particular types of risk limits the application of social marketing as a strategy for influencing the public to take responsibility and can potentially increase the risk to the public.
Resumo:
Provides a multidisciplinary and systematic analysis of the concept of fiscal consolidations. This book discusses the concept, suggesting that fiscal adjustment can be in trade-off with economic growth if certain conditions are met. Fiscal consolidation has significant short term costs which dampen economic growth. This widely shared consensus in literature on political economy makes fiscal adjustment highly unpopular. Benczes conducts a systematic analysis to find out whether it is possible to have fiscal consolidation and experience economic growth even in the short run.The book provides a clear, multidisciplinary and systematic analysis of the relatively new concept of the so-called expansionary fiscal consolidations. This concept suggests that fiscal adjustment can be in trade-off with economic growth if certain conditions are met. But why do only a few countries and only at certain times experience the expansionary effects, while others not at all? The necessary conditions and circumstances have been totally neglected in the literature, or analyzed only partially at best.Having evolved a theoretical framework, it is tested on a difficult case: Hungary, which has had the highest deficit in the European Union. The main question was whether Hungary has a chance to experience short term growth effects in times of adjustment. ----- Contents: List of Figures List of Tables Acknowledgements 1. Introduction Part One: A critical Assessment of the Concept of Non-Keynesian Effects 2. Stylized Facts of EU Countries’ Major Fiscal Episodes 3. An Expectational View of Fiscal Policy: A Non-Linear Approach to Fiscal Consolidation 4. The Composition of Adjustment and the Structure of Labor Markets: A Linear Approach to Fiscal Consolidation Part Two: Testing the Institutional Conditions of Non-Keynesian Effects in Hungary 5. From Goulash Communism To Neo-Kadarism: An Overview 6. Financial Intermediation in Hungary—a Comparative Perspective 7. The Structure of the Hungarian General Budget—a Decompositional Analysis 8. The Labor Market and Wage Bargaining in Hungary—the (Ir)relevance of a Social Pact 9. Conclusion References Appendices Index
Resumo:
Recent technological developments have made it possible to design various microdevices where fluid flow and heat transfer are involved. For the proper design of such systems, the governing physics needs to be investigated. Due to the difficulty to study complex geometries in micro scales using experimental techniques, computational tools are developed to analyze and simulate flow and heat transfer in microgeometries. However, conventional numerical methods using the Navier-Stokes equations fail to predict some aspects of microflows such as nonlinear pressure distribution, increase mass flow rate, slip flow and temperature jump at the solid boundaries. This necessitates the development of new computational methods which depend on the kinetic theory that are both accurate and computationally efficient. In this study, lattice Boltzmann method (LBM) was used to investigate the flow and heat transfer in micro sized geometries. The LBM depends on the Boltzmann equation which is valid in the whole rarefaction regime that can be observed in micro flows. Results were obtained for isothermal channel flows at Knudsen numbers higher than 0.01 at different pressure ratios. LBM solutions for micro-Couette and micro-Poiseuille flow were found to be in good agreement with the analytical solutions valid in the slip flow regime (0.01 < Kn < 0.1) and direct simulation Monte Carlo solutions that are valid in the transition regime (0.1 < Kn < 10) for pressure distribution and velocity field. The isothermal LBM was further extended to simulate flows including heat transfer. The method was first validated for continuum channel flows with and without constrictions by comparing the thermal LBM results against accurate solutions obtained from analytical equations and finite element method. Finally, the capability of thermal LBM was improved by adding the effect of rarefaction and the method was used to analyze the behavior of gas flow in microchannels. The major finding of this research is that, the newly developed particle-based method described here can be used as an alternative numerical tool in order to study non-continuum effects observed in micro-electro-mechanical-systems (MEMS).
Resumo:
We present a framework for explaining variation in predator invasion success and predator impacts on native prey that integrates information about predator–prey naïveté, predator and prey behavioral responses to each other, consumptive and non-consumptive effects of predators on prey, and interacting effects of multiple species interactions. We begin with the ‘naïve prey’ hypothesis that posits that naïve, native prey that lack evolutionary history with non-native predators suffer heavy predation because they exhibit ineffective antipredator responses to novel predators. Not all naïve prey, however, show ineffective antipredator responses to novel predators. To explain variation in prey response to novel predators, we focus on the interaction between prey use of general versus specific cues and responses, and the functional similarity of non-native and native predators. Effective antipredator responses reduce predation rates (reduce consumptive effects of predators, CEs), but often also carry costs that result in non-consumptive effects (NCEs) of predators. We contrast expected CEs versus NCEs for non-native versus native predators, and discuss how differences in the relative magnitudes of CEs and NCEs might influence invasion dynamics. Going beyond the effects of naïve prey, we discuss how the ‘naïve prey’, ‘enemy release’ and ‘evolution of increased competitive ability’ (EICA) hypotheses are inter-related, and how the importance of all three might be mediated by prey and predator naïveté. These ideas hinge on the notion that non-native predators enjoy a ‘novelty advantage’ associated with the naïveté of native prey and top predators. However, non-native predators could instead suffer from a novelty disadvantage because they are also naïve to their new prey and potential predators. We hypothesize that patterns of community similarity and evolution might explain the variation in novelty advantage that can underlie variation in invasion outcomes. Finally, we discuss management implications of our framework, including suggestions for managing invasive predators, predator reintroductions and biological control.
Resumo:
Recent technological developments have made it possible to design various microdevices where fluid flow and heat transfer are involved. For the proper design of such systems, the governing physics needs to be investigated. Due to the difficulty to study complex geometries in micro scales using experimental techniques, computational tools are developed to analyze and simulate flow and heat transfer in microgeometries. However, conventional numerical methods using the Navier-Stokes equations fail to predict some aspects of microflows such as nonlinear pressure distribution, increase mass flow rate, slip flow and temperature jump at the solid boundaries. This necessitates the development of new computational methods which depend on the kinetic theory that are both accurate and computationally efficient. In this study, lattice Boltzmann method (LBM) was used to investigate the flow and heat transfer in micro sized geometries. The LBM depends on the Boltzmann equation which is valid in the whole rarefaction regime that can be observed in micro flows. Results were obtained for isothermal channel flows at Knudsen numbers higher than 0.01 at different pressure ratios. LBM solutions for micro-Couette and micro-Poiseuille flow were found to be in good agreement with the analytical solutions valid in the slip flow regime (0.01 < Kn < 0.1) and direct simulation Monte Carlo solutions that are valid in the transition regime (0.1 < Kn < 10) for pressure distribution and velocity field. The isothermal LBM was further extended to simulate flows including heat transfer. The method was first validated for continuum channel flows with and without constrictions by comparing the thermal LBM results against accurate solutions obtained from analytical equations and finite element method. Finally, the capability of thermal LBM was improved by adding the effect of rarefaction and the method was used to analyze the behavior of gas flow in microchannels. The major finding of this research is that, the newly developed particle-based method described here can be used as an alternative numerical tool in order to study non-continuum effects observed in micro-electro-mechanical-systems (MEMS).
Resumo:
First-principles electronic structure methods are used to predict the mobility of n-type carrier scattering in strained SiGe. We consider the effects of strain on the electron-phonon deformation potentials and the alloy scattering parameters. We calculate the electron-phonon matrix elements and fit them up to second order in strain. We find, as expected, that the main effect of strain on mobility comes from the breaking of the degeneracy of the six Δ and L valleys, and the choice of transport direction. The non-linear effects on the electron-phonon coupling of the Δ valley due to shear strain are found to reduce the mobility of Si-like SiGe by 50% per % strain. We find increases in mobility between 2 and 11 times that of unstrained SiGe for certain fixed Ge compositions, which should enhance the thermoelectric figure of merit in the same order, and could be important for piezoresistive applications.
Resumo:
Human activities represent a significant burden on the global water cycle, with large and increasing demands placed on limited water resources by manufacturing, energy production and domestic water use. In addition to changing the quantity of available water resources, human activities lead to changes in water quality by introducing a large and often poorly-characterized array of chemical pollutants, which may negatively impact biodiversity in aquatic ecosystems, leading to impairment of valuable ecosystem functions and services. Domestic and industrial wastewaters represent a significant source of pollution to the aquatic environment due to inadequate or incomplete removal of chemicals introduced into waters by human activities. Currently, incomplete chemical characterization of treated wastewaters limits comprehensive risk assessment of this ubiquitous impact to water. In particular, a significant fraction of the organic chemical composition of treated industrial and domestic wastewaters remains uncharacterized at the molecular level. Efforts aimed at reducing the impacts of water pollution on aquatic ecosystems critically require knowledge of the composition of wastewaters to develop interventions capable of protecting our precious natural water resources.
The goal of this dissertation was to develop a robust, extensible and high-throughput framework for the comprehensive characterization of organic micropollutants in wastewaters by high-resolution accurate-mass mass spectrometry. High-resolution mass spectrometry provides the most powerful analytical technique available for assessing the occurrence and fate of organic pollutants in the water cycle. However, significant limitations in data processing, analysis and interpretation have limited this technique in achieving comprehensive characterization of organic pollutants occurring in natural and built environments. My work aimed to address these challenges by development of automated workflows for the structural characterization of organic pollutants in wastewater and wastewater impacted environments by high-resolution mass spectrometry, and to apply these methods in combination with novel data handling routines to conduct detailed fate studies of wastewater-derived organic micropollutants in the aquatic environment.
In Chapter 2, chemoinformatic tools were implemented along with novel non-targeted mass spectrometric analytical methods to characterize, map, and explore an environmentally-relevant “chemical space” in municipal wastewater. This was accomplished by characterizing the molecular composition of known wastewater-derived organic pollutants and substances that are prioritized as potential wastewater contaminants, using these databases to evaluate the pollutant-likeness of structures postulated for unknown organic compounds that I detected in wastewater extracts using high-resolution mass spectrometry approaches. Results showed that application of multiple computational mass spectrometric tools to structural elucidation of unknown organic pollutants arising in wastewaters improved the efficiency and veracity of screening approaches based on high-resolution mass spectrometry. Furthermore, structural similarity searching was essential for prioritizing substances sharing structural features with known organic pollutants or industrial and consumer chemicals that could enter the environment through use or disposal.
I then applied this comprehensive methodological and computational non-targeted analysis workflow to micropollutant fate analysis in domestic wastewaters (Chapter 3), surface waters impacted by water reuse activities (Chapter 4) and effluents of wastewater treatment facilities receiving wastewater from oil and gas extraction activities (Chapter 5). In Chapter 3, I showed that application of chemometric tools aided in the prioritization of non-targeted compounds arising at various stages of conventional wastewater treatment by partitioning high dimensional data into rational chemical categories based on knowledge of organic chemical fate processes, resulting in the classification of organic micropollutants based on their occurrence and/or removal during treatment. Similarly, in Chapter 4, high-resolution sampling and broad-spectrum targeted and non-targeted chemical analysis were applied to assess the occurrence and fate of organic micropollutants in a water reuse application, wherein reclaimed wastewater was applied for irrigation of turf grass. Results showed that organic micropollutant composition of surface waters receiving runoff from wastewater irrigated areas appeared to be minimally impacted by wastewater-derived organic micropollutants. Finally, Chapter 5 presents results of the comprehensive organic chemical composition of oil and gas wastewaters treated for surface water discharge. Concurrent analysis of effluent samples by complementary, broad-spectrum analytical techniques, revealed that low-levels of hydrophobic organic contaminants, but elevated concentrations of polymeric surfactants, which may effect the fate and analysis of contaminants of concern in oil and gas wastewaters.
Taken together, my work represents significant progress in the characterization of polar organic chemical pollutants associated with wastewater-impacted environments by high-resolution mass spectrometry. Application of these comprehensive methods to examine micropollutant fate processes in wastewater treatment systems, water reuse environments, and water applications in oil/gas exploration yielded new insights into the factors that influence transport, transformation, and persistence of organic micropollutants in these systems across an unprecedented breadth of chemical space.
Resumo:
In the past decade, several major food safety crises originated from problems with feed. Consequently, there is an urgent need for early detection of fraudulent adulteration and contamination in the feed chain. Strategies are presented for two specific cases, viz. adulterations of (i) soybean meal with melamine and other types of adulterants/contaminants and (ii) vegetable oils with mineral oil, transformer oil or other oils. These strategies comprise screening at the feed mill or port of entry with non-destructive spectroscopic methods (NIRS and Raman), followed by post-screening and confirmation in the laboratory with MS-based methods. The spectroscopic techniques are suitable for on-site and on-line applications. Currently they are suited to detect fraudulent adulteration at relatively high levels but not to detect low level contamination. The potential use of the strategies for non-targeted analysis is demonstrated.
Resumo:
In recent years modern numerical methods have been employed in the design of Wave Energy Converters (WECs), however the high computational costs associated with their use makes it prohibitive to undertake simulations involving statistically relevant numbers of wave cycles. Experimental tests in wave tanks could also be performed more efficiently and economically if short time traces, consisting of only a few wave cycles, could be used to evaluate the hydrodynamic characteristics of a particular device or design modification. Ideally, accurate estimations of device performance could be made utilizing results obtained from investigations with a relatively small number of wave cycles. However the difficulty here is that many WECs, such as the Oscillating Wave Surge Converter (OWSC), exhibit significant non-linearity in their response. Thus it is challenging to make accurate predictions of annual energy yield for a given spectral sea state using short duration realisations of that sea. This is because the non-linear device response to particular phase couplings of sinusoidal components within those time traces might influence the estimate of mean power capture obtained. As a result it is generally accepted that the most appropriate estimate of mean power capture for a sea state be obtained over many hundreds (or thousands) of wave cycles. This ensures that the potential influence of phase locking is negligible in comparison to the predictions made. In this paper, potential methods of providing reasonable estimates of relative variations in device performance using short duration sea states are introduced. The aim of the work is to establish the shortness of sea state required to provide statistically significant estimations of the mean power capture of a particular type of Wave Energy Converter. The results show that carefully selected wave traces can be used to reliably assess variations in power output due to changes in the hydrodynamic design or wave climate.
Resumo:
Nigerian scam, also known as advance fee fraud or 419 scam, is a prevalent form of online fraudulent activity that causes financial loss to individuals and businesses. Nigerian scam has evolved from simple non-targeted email messages to more sophisticated scams targeted at users of classifieds, dating and other websites. Even though such scams are observed and reported by users frequently, the community’s understanding of Nigerian scams is limited since the scammers operate “underground”. To better understand the underground Nigerian scam ecosystem and seek effective methods to deter Nigerian scam and cybercrime in general, we conduct a series of active and passive measurement studies. Relying upon the analysis and insight gained from the measurement studies, we make four contributions: (1) we analyze the taxonomy of Nigerian scam and derive long-term trends in scams; (2) we provide an insight on Nigerian scam and cybercrime ecosystems and their underground operation; (3) we propose a payment intervention as a potential deterrent to cybercrime operation in general and evaluate its effectiveness; and (4) we offer active and passive measurement tools and techniques that enable in-depth analysis of cybercrime ecosystems and deterrence on them. We first created and analyze a repository of more than two hundred thousand user-reported scam emails, stretching from 2006 to 2014, from four major scam reporting websites. We select ten most commonly observed scam categories and tag 2,000 scam emails randomly selected from our repository. Based upon the manually tagged dataset, we train a machine learning classifier and cluster all scam emails in the repository. From the clustering result, we find a strong and sustained upward trend for targeted scams and downward trend for non-targeted scams. We then focus on two types of targeted scams: sales scams and rental scams targeted users on Craigslist. We built an automated scam data collection system and gathered large-scale sales scam emails. Using the system we posted honeypot ads on Craigslist and conversed automatically with the scammers. Through the email conversation, the system obtained additional confirmation of likely scam activities and collected additional information such as IP addresses and shipping addresses. Our analysis revealed that around 10 groups were responsible for nearly half of the over 13,000 total scam attempts we received. These groups used IP addresses and shipping addresses in both Nigeria and the U.S. We also crawled rental ads on Craigslist, identified rental scam ads amongst the large number of benign ads and conversed with the potential scammers. Through in-depth analysis of the rental scams, we found seven major scam campaigns employing various operations and monetization methods. We also found that unlike sales scammers, most rental scammers were in the U.S. The large-scale scam data and in-depth analysis provide useful insights on how to design effective deterrence techniques against cybercrime in general. We study underground DDoS-for-hire services, also known as booters, and measure the effectiveness of undermining a payment system of DDoS Services. Our analysis shows that the payment intervention can have the desired effect of limiting cybercriminals’ ability and increasing the risk of accepting payments.
Resumo:
The marine diatom Haslea ostrearia produces a water-soluble blue-pigment named marennine of economic interest (e.g. in aquaculture for the greening of oysters). Up to date the studies devoted to ecological conditions under which this microalga develops never took into account the bacterial-H. ostrearia relationships. In this study the bacterial community was analysed by PCR-TTGE before and after H. ostrearia isolation cells recovered from 4 localities, to distinguish the relative part of the biotope and the biocenose and eventually to describe the temporal dynamic of the structure of the bacterial community. The bacterial structure of the phycosphere differed strongly from that of the bulk sediment. The similarity between bacteria recovered from the biofilm and the suspended bacteria did not exceed 10% (vs. > 90% amongst biofilms). The differences in genetic fingerprints, more especially high between two H. ostrearia isolates showed also the highest differences in the bacterial structure as the result of specific metabolomics profiles. The non-targeted metabolomic investigation showed that these profiles were more distinct in case of bacteria-alga associations than for the H. ostrearia monoculture. At the scale of a culture cycle in laboratory conditions, the bacterial community was specific to the growth stage. When H. ostrearia was subcultured for 9 months, a shift in the bacterial structure was shown from 3-months subculturing and the bacterial structure stabilized afterwards (70-86% similarities). A first insight of the relationships between H. ostrearia and its surrounding bacteria was shown for a better understanding of the ecological feature of this diatom.
Resumo:
The marine diatom Haslea ostrearia [1] produces a water-soluble blue-pigment named marennine [2] of economic interest. But the lack of knowledge of the ecological conditions, under which this microalga develops in its natural ecosystem, more especially bacteria H. ostrearia interactions, prevents any optimization of its culture in well-controlled conditions. The structure of the bacterial community was analyzed by PCR-TTGE before and after the isolation of H. ostrearia cells recovered from 4 localities, to distinguish the relative part of the biotope and the biocenose and eventually to describe the temporal dynamic of the structure of the bacterial community at two time-scales. The differences in genetic fingerprints, more especially high between two H. ostrearia isolates (HO-R and HO-BM) showed also the highest differences in the bacterial structure [3] as the result of specific metabolomics profiles. The non-targeted metabolomic investigation showed that these profiles were more distinct in case of bacteria-alga associations than for the H. ostrearia monoculture Here we present a Q-TOF LC/MS metabolomic fingerprinting approach [3]: - to investigate differential metabolites of axenic versus non axenic H. ostrearia cultures. - to focus on the specific metabolites of a bacterial surrounding associated with the activation or inhibition of the microalga growing. The Agilent suite of data processing software makes feature finding, statistical analysis, and identification easier. This enables rapid transformation of complex raw data into biologically relevant metabolite information.
Resumo:
The marine diatom Haslea ostrearia [1] produces a water-soluble blue-pigment named marennine [2] of economic interest. But the lack of knowledge of the ecological conditions, under which this microalga develops in its natural ecosystem, more especially bacteria H. ostrearia interactions, prevents any optimization of its culture in well-controlled conditions. The structure of the bacterial community was analyzed by PCR-TTGE before and after the isolation of H. ostrearia cells recovered from 4 localities, to distinguish the relative part of the biotope and the biocenose and eventually to describe the temporal dynamic of the structure of the bacterial community at two time-scales. The differences in genetic fingerprints, more especially high between two H. ostrearia isolates (HO-R and HO-BM) showed also the highest differences in the bacterial structure [3] as the result of specific metabolomics profiles. The non-targeted metabolomic investigation showed that these profiles were more distinct in case of bacteria-alga associations than for the H. ostrearia monoculture Here we present a Q-TOF LC/MS metabolomic fingerprinting approach [3]: - to investigate differential metabolites of axenic versus non axenic H. ostrearia cultures. - to focus on the specific metabolites of a bacterial surrounding associated with the activation or inhibition of the microalga growing. The Agilent suite of data processing software makes feature finding, statistical analysis, and identification easier. This enables rapid transformation of complex raw data into biologically relevant metabolite information.