921 resultados para Non-linear mechanics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

When TiO2 powder was irradiated with a laser light (>0.8 MW peak pulse power (PPP) at 355 nm) a visible change in its colour from white to dark blue was observed. The initial rate of change of the total colour difference was related to the laser light intensity and the longer the irradiation time the more substantial the colour change. The result of X-ray diffraction (XRD) studies showed that the crystal structure of the TiO2 developed a more rutile form after laser exposure. ESR studies indicated that the colour change was associated with the generation of Ti(III) species in the photocatalyst. Electron microscopic studies showed that more spherical shaped particles of TiO2 were observed after laser treatment although the average particle size remained largely unchanged. No significant changes in the band gap or the surface area of the laser modified TiO2 were observed. The laser modified photocatalyst showed no enhancement in activity for the destruction of methylene blue, rhodamine B and stearic acids, indicating that the rutile/anatase ratio is unimportant in the destruction of the test pollutants used in this work, via TiO2 photocatalysis

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of high power pulsed laser light on a TiO2 photocatalyst (powder and 0.1% (w/v) aqueous suspension) are reported. When this material was irradiated with a laser of power over 0.8 MW peak pulse power at 355 nm wavelength a visible change in colour from white to dark blue was observed. The initial rate of change of the total colour difference is related to the laser power; the stronger the laser power the darker the colour change. The result of X-ray diffraction studies indicates that the crystal structure of the TiO2 developed a more rutile form after laser exposure. Electron microscopic studies showed that spherical shaped particles of TiO2 were observed after laser treatment. Preliminary results show enhanced photocatalytic activity for the destruction of methylene blue. (C) 1999 Elsevier Science S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Punching failure is the common failure mode in concrete bridge deck slabs when these structural components are subjected to local patch loads, such as tyre loads. Past research has shown that reinforced concrete slabs in girder–slab type bridges have a load-carrying capacity far greater than the ultimate static loads predicted by traditional design methods, because of the presence of compressive membrane action. However, due to the instability problems from punching failure, it is difficult to predict ultimate capacities accurately in numerical analyses. In order to overcome the instability problems, this paper establishes an efficient non-linear finite-element analysis using the commercial finite-element package Abaqus. In the non-linear finite-element analysis, stabilisation methods were adopted and failure criteria were established to predict the ultimate punching behaviour of deck slabs in composite steel–concrete bridges. The proposed non-linear finite-element analysis predictions showed a good correlation on punching capacities with experimental tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an investigation of coupled nonlinear electromagnetic modes in an electron-positron plasma by using the well established technique of Poincaré surface of section plots. A variety of nonlinear solutions corresponding to interesting coupled electrostatic-electromagnetic modes sustainable in electron-positron plasmas is shown on the Poincaré section. A special class of localized solitary wave solution is identified along a separatrix curve and its importance in the context of electromagnetic wave propagation in an electron-positron plasma is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple non-linear global-local finite element methodology is presented. A global coarse model, using 2-D shell elements, is solved non-linearly and the displacements and rotations around a region of interest are applied, as displacement boundary conditions, to a refined local 3-D model using Kirchhoff plate assumptions. The global elements' shape functions are used to interpolate between nodes. The local model is then solved non-linearly with an incremental scheme independent of that used for the global model.