968 resultados para Non-leaf tissue
Resumo:
In Amazonian floodplains the trees are exposed to extreme flooding of up to 230 days a year. Waterlogging of the roots and stems affects growth and metabolic activity of the trees. An increased leaf fall in the aquatic period and annual increment rings in the wood indicate periodical growth reductions. The present study aims at documenting seasonal changes of metabolism and vitality of adult trees in the annual cycle as expressed by changes of leaf nitrogen content. Leaves of six tree species common in floodplains in Central Amazonia and typical representants of different growth strategies were collected every month between May 1994 and June 1995 in the vicinity of Manaus, Brazil. Mean leaf nitrogen content varied between 1.3% and 3.2% in the non-flooded trees. Three species showed significantly lower Ν content in the flooded period (p=0.05, 0.001, 0.001), the difference ranging 20-25% lower than in the non-flooded period. Two species showed no significant difference while Nectandra amazonum showed 32% more Ν in the flooded season (p=0.001). Leaf nitrogen content was generally high when new leaves were flushed (in the flooded period) and decreased continuously thereafter in all species. Three species showed an additional peak of nitrogen during the first month of the terrestrial phase, in leaves which had flushed earlier, indicating that flooding may disturb nitrogen uptake.
Resumo:
This paper presents some of the results of the research project “Masonry Enclosures” developed in the framework of the transnational access (TA) to LNEC’s triaxial shake table within the FP7 project SERIES.
Resumo:
ABSTRACT Leaves have a variety of morphological and anatomical characters mainly influenced by climatic, edaphic and biotic factors. The aim of this study was to describe the anatomical leaf traits of Qualea parviflora from three phytophysiognomies. The studied phytophysiognomies were Amazon Savannah on rocky outcrops (ASR), Transition Rupestrian Cerrado (TRC), and Cerradão (CDA). Freehand sections of the leaf blade were made and stained with 0.5% astra blue and with basic fuchsin. From the adaxial and abaxial leaf surface, freehand paradermal sections were made for epidermis analysis. The Jeffrey´s method, with modifications, was used in the epidermis dissociation process. The samples from the TRC phytophysiognomy had relatively smaller ordinary epidermal cells, higher abundance of trichomes, and mesophyll with few intercellular spaces, in comparison to the other phytophysiognomies. The leaves from the ASR phytophysiognomy had higher stomatal index (SI = 21.02), and five to six layers of sclerenchyma surrounding the midrib vascular bundle. The secondary vascular bundles had thicker cell walls and the bundle sheath extended up to the epidermal tissue of both leaf sides. Leaves from the CDA phytophysiognomy had mesomorphic environmental traits, such as a thinner cuticle. It is concluded that trees from ASR and TRC phytophysiognomies have xeromorphic traits following the environmental conditions where they occur.
Resumo:
Hind-limb ischemia has been used in type 1 diabetic mice to evaluate treatments for peripheral arterial disease or mechanisms of vascular impairment in diabetes [1]. Vascular deficiency is not only a pathophysiological condition, but also an obvious circumstance in tissue regeneration and in tissue engineering and regenerative medicine (TERM) strategies. We performed a pilot experiment of hind-limb ischemia in streptozotocin(STZ)-induced type 1 diabetic mice to hypothesise whether diabetes influences neovascularization induced by biomaterials. The dependent variables included blood flow and markers of arteriogenesis and angiogenesis. Type 1 diabetes was induced in 8-week-old C57BL/6 mice by an i.p. injection of STZ (50 mg/kg daily for 5 days). Hind-limb ischemia was created under deep anaesthesia and the left femoral artery and vein were isolated, ligated, and excised. The contralateral hind limb served as an internal control within each mouse. Non-diabetic ischaemic mice were used as experiment controls. At the hind-limb ischemia surgical procedure, different types of biomaterials were placed in the blood vessels gap. Blood flow was estimated by Laser Doppler perfusion imager, right after surgery and then weekly. After 28 days of implantation, surrounding muscle was excised and evaluated by histological analysis for arteriogenesis and angiogenesis. The results showed that implanted biomaterials were promote faster restoration of blood flow in the ischemic limbs and improved neovascularization in the diabetic mice. Therefore, we herein demonstrate that the combined model of hind-limb ischemia in type 1 diabetes mice is suitable to evaluate the neovascularization potential of biomaterials and eventually tissue engineering constructs.
Resumo:
Programa Doutoral em Engenharia Biomédica
Resumo:
Publicado em "Journal of tissue engineering and regenerative medicine". Vol. 8, suppl. s1 (2014)
Resumo:
Membrane-like scaffolds are suitable to induce regeneration in many and different anatomic sites, such as periodontal membrane, skin, liver and cardiac tissues. In some circumstances, the films should adapt to geometrical changes of the attached tissues, such as in cardiac or blood vessel tissue engineering applications. In this context, we developed stretchable two-dimensional multilayer constructs through the assembling of two natural-based polyelectrolytes, chitosan (CHT) and chondroitin sulphate (CS), using the layer-by-layer methodology. The morphology, topography and the transparency of the films were evaluated. The in- fluence of genipin, a natural-derived cross-linker agent, was also investigated in the control of the mechanical properties of the CHT/CS films. The water uptake ability can be tailored by changing the cross-linker concentration, which influenced the young modulus and ultimate tensile strength. The maximum extension tends to decrease with the increase of genipin concentration, compromising the elastic properties of CHT/CS films: nevertheless using lower cross-linker contents, the ultimate tensile stress is similar to the films not cross-linked but exhibiting a significant higher modulus. The in vitro biological assays showed better L929 cell adhesion and proliferation when using the crosslinked membranes and confirmed the non-cytotoxicity of the CHT/CS films. The developed free-standing biomimetic multilayer could be designed to fulfill specific therapeutic requirements by tuning properties such as swelling, mechanical and biological performances.
Resumo:
Background:Left atrial volume (LAV) is a predictor of prognosis in patients with heart failure.Objective:We aimed to evaluate the determinants of LAV in patients with dilated cardiomyopathy (DCM).Methods:Ninety patients with DCM and left ventricular (LV) ejection fraction ≤ 0.50 were included. LAV was measured with real-time three-dimensional echocardiography (eco3D). The variables evaluated were heart rate, systolic blood pressure, LV end-diastolic volume and end-systolic volume and ejection fraction (eco3D), mitral inflow E wave, tissue Doppler e´ wave, E/e´ ratio, intraventricular dyssynchrony, 3D dyssynchrony index and mitral regurgitation vena contracta. Pearson´s coefficient was used to identify the correlation of the LAV with the assessed variables. A multiple linear regression model was developed that included LAV as the dependent variable and the variables correlated with it as the predictive variables.Results:Mean age was 52 ± 11 years-old, LV ejection fraction: 31.5 ± 8.0% (16-50%) and LAV: 39.2±15.7 ml/m2. The variables that correlated with the LAV were LV end-diastolic volume (r = 0.38; p < 0.01), LV end-systolic volume (r = 0.43; p < 0.001), LV ejection fraction (r = -0.36; p < 0.01), E wave (r = 0.50; p < 0.01), E/e´ ratio (r = 0.51; p < 0.01) and mitral regurgitation (r = 0.53; p < 0.01). A multivariate analysis identified the E/e´ ratio (p = 0.02) and mitral regurgitation (p = 0.02) as the only independent variables associated with LAV increase.Conclusion:The LAV is independently determined by LV filling pressures (E/e´ ratio) and mitral regurgitation in DCM.
Resumo:
AbstractBackground:Human tissue kallikrein (hK1) is a key enzyme in the kallikrein–kinin system (KKS). hK1-specific amidase activity is reduced in urine samples from hypertensive and heart failure (HF) patients. The pathophysiologic role of hK1 in coronary artery disease (CAD) remains unclear.Objective:To evaluate hK1-specific amidase activity in the urine of CAD patientsMethods:Sixty-five individuals (18–75 years) who underwent cardiac catheterism (CATH) were included. Random midstream urine samples were collected immediately before CATH. Patients were classified in two groups according to the presence of coronary lesions: CAD (43 patients) and non-CAD (22 patients). hK1 amidase activity was estimated using the chromogenic substrate D-Val-Leu-Arg-Nan. Creatinine was determined using Jaffé’s method. Urinary hK1-specific amidase activity was expressed as µM/(min · mg creatinine) to correct for differences in urine flow rates.Results:Urinary hK1-specific amidase activity levels were similar between CAD [0.146 µM/(min ·mg creatinine)] and non-CAD [0.189 µM/(min . mg creatinine)] patients (p = 0.803) and remained similar to values previously reported for hypertensive patients [0.210 µM/(min . mg creatinine)] and HF patients [0.104 µM/(min . mg creatinine)]. CAD severity and hypertension were not observed to significantly affect urinary hK1-specific amidase activity.Conclusion:CAD patients had low levels of urinary hK1-specific amidase activity, suggesting that renal KKS activity may be reduced in patients with this disease.
Resumo:
Abstract Background: GRACE risk score (GS) is a scoring system which has a prognostic significance in patients with non-ST segment elevation myocardial infarction (non-STEMI). Objective: The present study aimed to determine whether end-systolic or end-diastolic epicardial fat thickness (EFT) is more closely associated with high-risk non-STEMI patients according to the GS. Methods: We evaluated 207 patients who had non-STEMI beginning from October 2012 to February 2013, and 162 of them were included in the study (115 males, mean age: 66.6 ± 12.8 years). End-systolic and end-diastolic EFTs were measured with echocardiographic methods. Patients with high in-hospital GS were categorized as the H-GS group (in hospital GS > 140), while other patients were categorized as the low-to-moderate risk group (LM-GS). Results: Systolic and diastolic blood pressures of H-GS patients were lower than those of LM-GS patients, and the average heart rate was higher in this group. End-systolic EFT and end-diastolic EFT were significantly higher in the H-GS group. The echocardiographic assessment of right and left ventricles showed significantly decreased ejection fraction in both ventricles in the H-GS group. The highest correlation was found between GS and end-diastolic EFT (r = 0.438). Conclusion: End-systolic and end-diastolic EFTs were found to be increased in the H-GS group. However, end-diastolic EFT and GS had better correlation than end-systolic EFT and GS.
Resumo:
Exogenous concentrations of bean seed extract prepared from seeds pretreated in aerated water, homogenized in Veliky and Martin's 67-V salt solution, filtered, and added to the culture medium at proper concentrations promote callus proliferation, root morphogenesis, and shoot morphogenesis in leaf explains of Phaseolus vulgaris var. Bico de Ouro. The activity of the bean seed factor is dependent upon the period of pretreatment in aerated water.
Resumo:
Bone defects in revision knee arthroplasty are often located in load-bearing regions. The goal of this study was to determine whether a physiologic load could be used as an in situ osteogenic signal to the scaffolds filling the bone defects. In order to answer this question, we proposed a novel translation procedure having four steps: (1) determining the mechanical stimulus using finite element method, (2) designing an animal study to measure bone formation spatially and temporally using micro-CT imaging in the scaffold subjected to the estimated mechanical stimulus, (3) identifying bone formation parameters for the loaded and non-loaded cases appearing in a recently developed mathematical model for bone formation in the scaffold and (4) estimating the stiffness and the bone formation in the bone-scaffold construct. With this procedure, we estimated that after 3 years mechanical stimulation increases the bone volume fraction and the stiffness of scaffold by 1.5- and 2.7-fold, respectively, compared to a non-loaded situation.
Resumo:
Pleistocene glacial and interglacial periods have moulded the evolutionary history of European cold-adapted organisms. The role of the different mountain massifs has, however, not been accurately investigated in the case of high-altitude insect species. Here, we focus on three closely related species of non-flying leaf beetles of the genus Oreina (Coleoptera, Chrysomelidae), which are often found in sympatry within the mountain ranges of Europe. After showing that the species concept as currently applied does not match barcoding results, we show, based on more than 700 sequences from one nuclear and three mitochondrial genes, the role of biogeography in shaping the phylogenetic hypothesis. Dating the phylogeny using an insect molecular clock, we show that the earliest lineages diverged more than 1 Mya and that the main shift in diversification rate occurred between 0.36 and 0.18 Mya. By using a probabilistic approach on the parsimony-based dispersal/vicariance framework (MP-DIVA) as well as a direct likelihood method of state change optimization, we show that the Alps acted as a cross-roads with multiple events of dispersal to and reinvasion from neighbouring mountains. However, the relative importance of vicariance vs. dispersal events on the process of rapid diversification remains difficult to evaluate because of a bias towards overestimation of vicariance in the DIVA algorithm. Parallels are drawn with recent studies of cold-adapted species, although our study reveals novel patterns in diversity and genetic links between European mountains, and highlights the importance of neglected regions, such as the Jura and the Balkanic range.
Resumo:
Land plants have developed a cuticle preventing uncontrolled water loss. Here we report that an ATP-binding cassette (ABC) subfamily G (ABCG) full transporter is required for leaf water conservation in both wild barley and rice. A spontaneous mutation, eibi1.b, in wild barley has a low capacity to retain leaf water, a phenotype associated with reduced cutin deposition and a thin cuticle. Map-based cloning revealed that Eibi1 encodes an HvABCG31 full transporter. The gene was highly expressed in the elongation zone of a growing leaf (the site of cutin synthesis), and its gene product also was localized in developing, but not in mature tissue. A de novo wild barley mutant named "eibi1.c," along with two transposon insertion lines of rice mutated in the ortholog of HvABCG31 also were unable to restrict water loss from detached leaves. HvABCG31 is hypothesized to function as a transporter involved in cutin formation. Homologs of HvABCG31 were found in green algae, moss, and lycopods, indicating that this full transporter is highly conserved in the evolution of land plants.
Resumo:
BACKGROUND/AIM: Both steatosis and insulin resistance have been linked to accelerated fibrosis in chronic hepatitis C. Connective tissue growth factor (CTGF) plays a major role in extracellular matrix production in fibrotic disorders including cirrhosis, and its expression is stimulated in vitro by insulin and glucose. We hypothesized that CTGF may link steatosis, insulin resistance and fibrosis. METHODS: We included 153 chronic hepatitis C patients enrolled in the Swiss Hepatitis C Cohort Study and for whom a liver biopsy and plasma samples were available. CTGF expression was assessed quantitatively by immunohistochemistry. In 94 patients (57 with genotypes non-3), plasma levels of glucose, insulin and leptin were also measured. CTGF synthesis was investigated by immunoblotting on LX-2 stellate cells. RESULTS: Connective tissue growth factor expression was higher in patients with steatosis (P=0.039) and in patients with fibrosis (P=0.008) than those without these features. CTGF levels were neither associated with insulinaemia or with glycaemia, nor with inflammation. By multiple regression analysis, CTGF levels were independently associated with steatosis, a past history of alcohol abuse, plasma leptin and HCV RNA levels; when only patients with genotypes non-3 were considered, CTGF levels were independently associated with a past history of alcohol abuse, plasma leptin levels and steatosis. Leptin stimulated CTGF synthesis in LX-2 cells. CONCLUSIONS: In patients with chronic hepatitis C and steatosis, CTGF may promote fibrosis independently of inflammation. CTGF may link steatosis and fibrosis via increased leptin levels.