985 resultados para Nitrogen compounds.
Resumo:
Raman spectrum of burgessite, Co2(H2O)4[AsO3OH]2.H2O was studied, interpreted and compared with its infrared spectrum. The stretching and bending vibrations of (AsO3) and As-OH units together with the stretching, bending and libration modes of water molecules and hydroxyl ions were assigned. The range of O-H...O hydrogen bond lengths was inferred from the Raman and infrared spectra of burgessite. The presence of (AsO3OH)2- units in the crystal structure of burgessite was proved in agreement with its recently solved crystal structure. Raman and infrared spectra of erythrite inferred from the RRUFF database are used for comparison.
Resumo:
Problem: Innate immune activation of human cells, for some intracellular pathogens, is advantageous for vacuole morphology and pathogenic viability. It is unknown whether innate immune activation is advantageous to Chlamydia trachomatis viability. ----- ----- Method of study: Innate immune activation of HEp-2 cells during Chlamydia infection was conducted using lipopolysaccharide (LPS), polyI:C, and wedelolactone (innate immune inhibitor) to investigate the impact of these conditions on viability of Chlamydia. ----- ----- Results: The addition of LPS and polyI:C to stimulate activation of the two distinct innate immune pathways (nuclear factor kappa beta and interferon regulatory factor) had no impact on the viability of Chlamydia. However, when compounds targeting either pathway were added in combination with the specific innate immune inhibitor (wedelolactone) a major impact on Chlamydia viability was observed. This impact was found to be due to the induction of apoptosis of the HEp-2 cells under these conditions. ----- ----- Conclusion: This is the first time that induction of apoptosis has been reported in C. trachomatis-infected cells when treated with a combination of innate immune activators and wedelolactone.
Resumo:
As part of a larger indoor environmental study, residential indoor and outdoor levels of nitrogen dioxide (NO2) were measured for 14 houses in a suburb of Brisbane, Queensland, Australia. Passive samplers were used for 48-h sampling periods during the winter of 1999. The average indoor and outdoor NO2 levels were 13.8 ± 6.3 and 16.7 ± 4.2 ppb, respectively. The indoor/outdoor NO2 concentration ratio ranged from 0.4 to 2.3, with a median value of 0.82. The results of statistic analyses indicated that there was no significant correlation between indoor and outdoor NO2 concentrations, or between indoor and fixed site NO2 monitoring station concentrations. However, there was a significant correlation between outdoor and fixed site NO2 monitoring station concentrations. There was also a significant correlation between indoor NO2 concentration and indoor submicrometre (0.007–0.808 μm) aerosol particle number concentrations. The results in this study indicated indoor NO2 levels are significantly affected by indoor NO2 sources, such as a gas stove and cigarette smoking. It implies that the outdoor or fixed site monitoring concentration alone is a poor predictor of indoor NO2 concentration.
Resumo:
Shedding light: Nitroaromatic compounds on gold nanoparticles (3 wt %) supported on ZrO2 can be reduced directly to the corresponding azo compounds when illuminated with visible light or ultraviolet light at 40 °C (see picture). The process occurs with high selectivity and at ambient temperature and pressure, and enables the selection of intermediates that are unstable in thermal reactions.
Resumo:
Raman spectra of two well-defined types of koritnigite crystals from the Jáchymov ore district, Czech Republic, were recorded and interpreted. No substantial differences were observed between both crystal types. Observed Raman bands were attributed to the (AsO3OH)2- stretching and bending vibrations, stretching and bending vibrations of water molecules and hydroxyl ions. Non-interpreted Raman spectra of koritnigite from the RRUFF database, and published infrared spectra of cobaltkoritnigite were used for comparison. The O-H...O hydrogen bond lengths in the crystal structure of koritnigite were inferred from the Raman spectra and compared with those derived from the X-ray single crystal refinement. The presence of (AsO3OH)2- units in the crystal structure of koritnigite was proved from the Raman spectra which supports the conclusions of the X-ray structure analysis.
Resumo:
Vehicular traffic in urban areas may adversely affect urban water quality through the build-up of traffic generated semi and non volatile organic compounds (SVOCs and NVOCs) on road surfaces. The characterisation of the build-up processes is the key to developing mitigation measures for the removal of such pollutants from urban stormwater. An in-depth analysis of the build-up of SVOCs and NVOCs was undertaken in the Gold Coast region in Australia. Principal Component Analysis (PCA) and Multicriteria Decision tools such as PROMETHEE and GAIA were employed to understand the SVOC and NVOC build-up under combined traffic scenarios of low, moderate, and high traffic in different land uses. It was found that congestion in the commercial areas and use of lubricants and motor oils in the industrial areas were the main sources of SVOCs and NVOCs on urban roads, respectively. The contribution from residential areas to the build-up of such pollutants was hardly noticeable. It was also revealed through this investigation that the target SVOCs and NVOCs were mainly attached to particulate fractions of 75 to 300 µm whilst the redistribution of coarse fractions due to vehicle activity mainly occurred in the >300 µm size range. Lastly, under combined traffic scenario, moderate traffic with average daily traffic ranging from 2300 to 5900 and average congestion of 0.47 was found to dominate SVOC and NVOC build-up on roads.
Resumo:
A model to predict the buildup of mainly traffic-generated volatile organic compounds or VOCs (toluene, ethylbenzene, ortho-xylene, meta-xylene, and para-xylene) on urban road surfaces is presented. The model required three traffic parameters, namely average daily traffic (ADT), volume to capacity ratio (V/C), and surface texture depth (STD), and two chemical parameters, namely total suspended solid (TSS) and total organic carbon (TOC), as predictor variables. Principal component analysis and two phase factor analysis were performed to characterize the model calibration parameters. Traffic congestion was found to be the underlying cause of traffic-related VOC buildup on urban roads. The model calibration was optimized using orthogonal experimental design. Partial least squares regression was used for model prediction. It was found that a better optimized orthogonal design could be achieved by including the latent factors of the data matrix into the design. The model performed fairly accurately for three different land uses as well as five different particle size fractions. The relative prediction errors were 10–40% for the different size fractions and 28–40% for the different land uses while the coefficients of variation of the predicted intersite VOC concentrations were in the range of 25–45% for the different size fractions. Considering the sizes of the data matrices, these coefficients of variation were within the acceptable interlaboratory range for analytes at ppb concentration levels.
Resumo:
The structures of the 1:1 proton-transfer compounds of isonipecotamide (4-piperidinecarboxamide) with 4-nitrophthalic acid, 4-carbamoylpiperidinium 2-carboxy-4-nitrobenzoate, C6H13N2O8+ C8H4O6- (I), 4,5-dichlorophthalic acid, 4-carbamoylpiperidinium 2-carboxy-4,5-dichlorobenzoate, C6H13N2O8+ C8H3Cl2O4- (II) and 5-nitroisophthalic acid, 4-carbamoylpiperidinium 3-carboxy-5-nitrobenzoate, C6H13N2O8+ C8H4O6- (III) as well as the 2:1 compound with terephthalic acid, bis(4-carbamoylpiperidinium)benzene-1,2-dicarboxylate dihydrate, 2(C6H13N2O8+) C8H4O42- . 2H2O (IV)have been determined at 200 K. All salts form hydrogen-bonded structures, one-dimensional in (II) and three-dimensional in (I), (III) and (IV). In (I) and (III) the centrosymmetric R2/2(8) cyclic amide-amide association is found while in (IV) several different types of water-bridged cyclic associations are present [graph sets R2/4(8), R3/4(10), R4/4(12), R3/3(18) and R4/6(22)]. The one-dimensional structure of (I), features the common 'planar' hydrogen 4,5-dichlorophthalate anion together with enlarged cyclic R3/3(13) and R3/4(17) associations. With the structures of (I) and (III) the presence of head-to-tail hydrogen phthalate chain substructures is found. In (IV) head-to-tail primary cation-anion associations are extended longitudinally into chains through the water-bridged cation associations and laterally by piperidinium N-H...O(carboxyl) and water O-H...O(carboxyl) hydrogen bonds. The structures reported here further demonstrate the utility of the isonipecotamide cation as a synthon for the generation of stable hydrogen-bonded structures. An additional example of cation--anion association with this cation is also shown in the asymmetric three-centre piperidinium N-H...O,O'(carboxyl) interaction in the first-reported structure of a 2:1 isonipecotamide-carboxylate salt.
Resumo:
Raman spectroscopy has been used to study vanadates in the solid state. The molecular structure of the vanadate minerals vésigniéite [BaCu3(VO4)2(OH)2] and volborthite [Cu3V2O7(OH)2·2H2O] have been studied by Raman spectroscopy and infrared spectroscopy. The spectra are related to the structure of the two minerals. The Raman spectrum of vésigniéite is characterized by two intense bands at 821 and 856 cm−1 assigned to ν1 (VO4)3− symmetric stretching modes. A series of infrared bands at 755, 787 and 899 cm−1 are assigned to the ν3 (VO4)3− antisymmetric stretching vibrational mode. Raman bands at 307 and 332 cm−1 and at 466 and 511 cm−1 are assigned to the ν2 and ν4 (VO4)3− bending modes. The Raman spectrum of volborthite is characterized by the strong band at 888 cm−1, assigned to the ν1 (VO3) symmetric stretching vibrations. Raman bands at 858 and 749 cm−1 are assigned to the ν3 (VO3) antisymmetric stretching vibrations; those at 814 cm−1 to the ν3 (VOV) antisymmetric vibrations; that at 508 cm−1 to the ν1 (VOV) symmetric stretching vibration and those at 442 and 476 cm−1 and 347 and 308 cm−1 to the ν4 (VO3) and ν2 (VO3) bending vibrations, respectively. The spectra of vésigniéite and volborthite are similar, especially in the region of skeletal vibrations, even though their crystal structures differ.
Resumo:
This paper uses an aggregate quantity space to decompose the temporal changes in nitrogen use efficiency and cumulative exergy use efficiency into changes of Moorsteen–Bjurek (MB) Total Factor Productivity (TFP) changes and changes in the aggregate nitrogen and cumulative exergy contents. Changes in productivity can be broken into technical change and changes in various efficiency measures such as technical efficiency, scale efficiency and residual mix efficiency. Changes in the aggregate nitrogen and cumulative exergy contents can be driven by changes in the quality of inputs and outputs and changes in the mixes of inputs and outputs. Also with cumulative exergy content analysis, changes in the efficiency in input production can increase or decrease the cumulative exergy transformity of agricultural production. The empirical study in 30 member countries of the Organisation for Economic Co-operation Development from 1990 to 2003 yielded some important findings. The production technology progressed but there were reductions in technical efficiency, scale efficiency and residual mix efficiency levels. This result suggests that the production frontier had shifted up but there existed lags in the responses of member countries to the technological change. Given TFP growth, improvements in nutrient use efficiency and cumulative exergy use efficiency were counteracted by reductions in the changes of the aggregate nitrogen contents ratio and aggregate cumulative exergy contents ratio. The empirical results also confirmed that different combinations of inputs and outputs as well as the quality of inputs and outputs could have more influence on the growth of nutrient and cumulative exergy use efficiency than factors that had driven productivity change. Keywords: Nutrient use efficiency; Cumulative exergy use efficiency; Thermodynamic efficiency change; Productivity growth; OECD agriculture; Sustainability