923 resultados para Newborn Eeg
Resumo:
Rodents are most useful models to study physiological and pathophysiological processes in early development, because they are born in a relatively immature state. However, only few techniques are available to monitor non-invasively heart frequency and respiratory rate in neonatal rodents without restraining or hindering access to the animal. Here we describe experimental procedures that allow monitoring of heart frequency by electrocardiography (ECG) and breathing rate with a piezoelectric transducer (PZT) element without hindering access to the animal. These techniques can be easily installed and are used in the present study in unrestrained awake and anesthetized neonatal C57/Bl6 mice and Wistar rats between postnatal day 0 and 7. In line with previous reports from awake rodents we demonstrate that heart rate in rats and mice increases during the first postnatal week. Respiratory frequency did not differ between both species, but heart rate was significantly higher in mice than in rats. Further our data indicate that urethane, an agent that is widely used for anesthesia, induces a hypoventilation in neonates whilst heart rate remains unaffected at a dose of 1 g per kg body weight. Of note, hypoventilation induced by urethane was not detected in rats at postnatal 0/1. To verify the detected hypoventilation we performed blood gas analyses. We detected a respiratory acidosis reflected by a lower pH and elevated level in CO2 tension (pCO2) in both species upon urethane treatment. Furthermore we found that metabolism of urethane is different in P0/1 mice and rats and between P0/1 and P6/7 in both species. Our findings underline the usefulness of monitoring basic cardio-respiratory parameters in neonates during anesthesia. In addition our study gives information on developmental changes in heart and breathing frequency in newborn mice and rats and the effects of urethane in both species during the first postnatal week.
Resumo:
Aim: To assess if the intake of levodopa in patients with Parkinson’s Disease (PD) changes cerebral connectivity, as revealed by simultaneous recording of hemodynamic (functional MRI, or fMRI) and electric (electroencephalogram, EEG) signals. Particularly, we hypothesize that the strongest changes in FC will involve the motor network, which is the most impaired in PD. Methods: Eight patients with diagnosis of PD “probable”, therapy with levodopa exclusively, normal cognitive and affective status, were included. Exclusion criteria were: moderate-severe rest tremor, levodopa induced dyskinesia, evidence of gray or white matter abnormalities on structural MRI. Scalp EEG (64 channels) were acquired inside the scanner (1.5 Tesla) before and after the intake of levodopa. fMRI functional connectivity was computed from four regions of interest: right and left supplementary motor area (SMA) and right and left precentral gyrus (primary motor cortex). Weighted partial directed coherence (w-PDC) was computed in the inverse space after the removal of EEG gradient and cardioballistic artifacts. Results and discussion: fMRI group analysis shows that the intake of levodopa increases hemodynamic functional connectivity among the SMAs / primary motor cortex and: sensory-motor network itself, attention network and default mode network. w-PDC analysis shows that EEG connectivity among regions of the motor network has the tendency to decrease after the intake the levodopa; furthermore, regions belonging to the DMN have the tendency to increase their outflow toward the rest of the brain. These findings, even if in a small sample of patients, suggest that other resting state physiological functional networks, beyond the motor one, are affected in patients with PD. The behavioral and cognitive tasks corresponding to the affected networks could benefit from the intake of levodopa.
Resumo:
L’obiettivo della mia tesi è quello di presentare e confrontare due tipologie di tecniche di indagine cerebrale, l’EEG (Elettroencefalogramma) e la fMRI (Risonanza Magnetica funzionale), evidenziandone i vantaggi e gli svantaggi, e le loro applicazioni in campo medico. Successivamente è presentato lo sviluppo di un modello sperimentale volto allo studio del fenomeno della sinestesia, a partire da dati estratti mediante le tecniche precedenti.
Resumo:
Nel presente lavoro di tesi è stato sviluppato e testato un sistema BCI EEG-based che sfrutta la modulazione dei ritmi sensorimotori tramite immaginazione motoria della mano destra e della mano sinistra. Per migliorare la separabilità dei due stati mentali, in questo lavoro di tesi si è sfruttato l'algoritmo CSP (Common Spatial Pattern), in combinazione ad un classificatore lineare SVM. I due stati mentali richiesti sono stati impiegati per controllare il movimento (rotazione) di un modello di arto superiore a 1 grado di libertà, simulato sullo schermo. Il cuore del lavoro di tesi è consistito nello sviluppo del software del sistema BCI (basato su piattaforma LabVIEW 2011), descritto nella tesi. L'intero sistema è stato poi anche testato su 4 soggetti, per 6 sessioni di addestramento.
Resumo:
I neuroni in alcune regioni del nostro cervello mostrano una risposta a stimoli multisensoriali (ad es. audio-visivi) temporalmente e spazialmente coincidenti maggiore della risposta agli stessi stimoli presi singolarmente (integrazione multisensoriale). Questa abilità può essere sfruttata per compensare deficit unisensoriali, attraverso training multisensoriali che promuovano il rafforzamento sinaptico all’interno di circuiti comprendenti le regioni multisensoriali stimolate. Obiettivo della presente tesi è stato quello di studiare quali strutture e circuiti possono essere stimolate e rinforzate da un training multisensoriale audio-visivo. A tale scopo, sono stati analizzati segnali elettroencefalografici (EEG) registrati durante due diversi task di discriminazione visiva (discriminazione della direzione di movimento e discriminazione di orientazione di una griglia) eseguiti prima e dopo un training audio-visivo con stimoli temporalmente e spazialmente coincidenti, per i soggetti sperimentali, o spazialmente disparati, per i soggetti di controllo. Dai segnali EEG di ogni soggetto è stato ricavato il potenziale evento correlato (ERP) sullo scalpo, di cui si è analizzata la componente N100 (picco in 140÷180 ms post stimolo) verificandone variazioni pre/post training mediante test statistici. Inoltre, è stata ricostruita l’attivazione delle sorgenti corticali in 6239 voxel (suddivisi tra le 84 ROI coincidenti con le Aree di Brodmann) con l’ausilio del software sLORETA. Differenti attivazioni delle ROI pre/post training in 140÷180 ms sono state evidenziate mediante test statistici. I risultati suggeriscono che il training multisensoriale abbia rinforzato i collegamenti sinaptici tra il Collicolo Superiore e il Lobulo Parietale Inferiore (nell’area Area di Brodmann 7), una regione con funzioni visuo-motorie e di attenzione spaziale.
Resumo:
Cognitive task performance differs considerably between individuals. Besides cognitive capacities, attention might be a source of such differences. The individual's EEG alpha frequency (IAF) is a putative marker of the subject's state of arousal and attention, and was found to be associated with task performance and cognitive capacities. However, little is known about the metabolic substrate (i.e. the network) underlying IAF. Here we aimed to identify this network. Correlation of IAF with regional Cerebral Blood Flow (rCBF) in fifteen young healthy subjects revealed a network of brain areas that are associated with the modulation of attention and preparedness for external input, which are relevant for task execution. We hypothesize that subjects with higher IAF have pre-activated task-relevant networks and thus are both more efficient in the task-execution, and show a reduced fMRI-BOLD response to the stimulus, not because the absolute amount of activation is smaller, but because the additional activation by processing of external input is limited due to the higher baseline.
Resumo:
To assess (1) how large-scale correlation of intracranial EEG signals in the high-frequency range (80-200Hz) evolves from the pre-ictal, through the ictal into the postictal state and (2) whether the contribution of local neuronal activity to large-scale EEG correlation differentiates epileptogenic from non-epileptogenic brain tissue.
Resumo:
Can adults attribute different meanings to the cries produced by the newborns on the basis of physical-acoustic cues in different communication conditions? In order to test this hypothesis, 20 females were asked to evaluate (according to four scales: anguish, anger, annoyance, care-seeking) 24 cries from 12 healthy full-term newborns (4-7h old): 6 newborns previously exposed to tactile communication (Group 1); 6 newborns without communication (Group 2). Annoyance category was not reliable and it was excluded from analyses. The 20 females attributed a higher rate of anger and anguish to the cries from Group 2, and a higher rate of care-seeking to the cries from Group 1. They attributed different meanings to the cries from Group 1, and undifferentiated meanings to the cries from Group 2. Consistent with bivariate analyses, Dysphonic Cry was the strongest predictor of anger/anguish. Although the Hyperphonic Cry was quantitatively not relevant, its absence was the first predictor for care-seeking.
Resumo:
To investigate whether there are any objective EEG characteristics that change significantly between specific time periods during maintenance of wakefulness test (MWT) and whether such changes are associated with the ability to appropriately communicate sleepiness.
Resumo:
Epileptic seizures typically reveal a high degree of stereotypy, that is, for an individual patient they are characterized by an ordered and predictable sequence of symptoms and signs with typically little variability. Stereotypy implies that ictal neuronal dynamics might have deterministic characteristics, presumably most pronounced in the ictogenic parts of the brain, which may provide diagnostically and therapeutically important information. Therefore the goal of our study was to search for indications of determinism in periictal intracranial electroencephalography (EEG) studies recorded from patients with pharmacoresistent epilepsy.
Resumo:
Patients with panic disorder (PD) have a bias to respond to normal stimuli in a fearful way. This may be due to the preactivation of fear-associated networks prior to stimulus perception. Based on EEG, we investigated the difference between patients with PD and normal controls in resting state activity using features of transiently stable brain states (microstates). EEGs from 18 drug-naive patients and 18 healthy controls were analyzed. Microstate analysis showed that one class of microstates (with a right-anterior to left-posterior orientation of the mapped field) displayed longer durations and covered more of the total time in the patients than controls. Another microstate class (with a symmetric, anterior-posterior orientation) was observed less frequently in the patients compared to controls. The observation that selected microstate classes differ between patients with PD and controls suggests that specific brain functions are altered already during resting condition. The altered resting state may be the starting point of the observed dysfunctional processing of phobic stimuli.
Resumo:
Abnormal perceptions and cognitions in schizophrenia might be related to abnormal resting states of the brain. Previous research found that a specific class (class D) of sub-second electroencephalography (EEG) microstates was shortened in schizophrenia. This shortening correlated with positive symptoms. We questioned if this reflected positive psychotic traits or present psychopathology.
Resumo:
Newborn screening (NBS) for Cystic Fibrosis (CF) has been introduced in many countries, but there is no ideal protocol suitable for all countries. This retrospective study was conducted to evaluate whether the planned two step CF NBS with immunoreactive trypsinogen (IRT) and 7 CFTR mutations would have detected all clinically diagnosed children with CF in Switzerland.