293 resultados para Neovascularization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite major advances in the study of glioma, the quantitative links between intra-tumor molecular/cellular properties, clinically observable properties such as morphology, and critical tumor behaviors such as growth and invasiveness remain unclear, hampering more effective coupling of tumor physical characteristics with implications for prognosis and therapy. Although molecular biology, histopathology, and radiological imaging are employed in this endeavor, studies are severely challenged by the multitude of different physical scales involved in tumor growth, i.e., from molecular nanoscale to cell microscale and finally to tissue centimeter scale. Consequently, it is often difficult to determine the underlying dynamics across dimensions. New techniques are needed to tackle these issues. Here, we address this multi-scalar problem by employing a novel predictive three-dimensional mathematical and computational model based on first-principle equations (conservation laws of physics) that describe mathematically the diffusion of cell substrates and other processes determining tumor mass growth and invasion. The model uses conserved variables to represent known determinants of glioma behavior, e.g., cell density and oxygen concentration, as well as biological functional relationships and parameters linking phenomena at different scales whose specific forms and values are hypothesized and calculated based on in vitro and in vivo experiments and from histopathology of tissue specimens from human gliomas. This model enables correlation of glioma morphology to tumor growth by quantifying interdependence of tumor mass on the microenvironment (e.g., hypoxia, tissue disruption) and on the cellular phenotypes (e.g., mitosis and apoptosis rates, cell adhesion strength). Once functional relationships between variables and associated parameter values have been informed, e.g., from histopathology or intra-operative analysis, this model can be used for disease diagnosis/prognosis, hypothesis testing, and to guide surgery and therapy. In particular, this tool identifies and quantifies the effects of vascularization and other cell-scale glioma morphological characteristics as predictors of tumor-scale growth and invasion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We previously found that FoxM1B is overexpressed in human glioblastomas and that forced FoxM1B expression in anaplastic astrocytoma cells leads to the formation of highly angiogenic glioblastoma in nude mice. However, the molecular mechanisms by which FoxM1B enhances glioma angiogenesis are currently unknown. In this study, we found that vascular endothelial growth factor (VEGF) is a direct transcriptional target of FoxM1B. FoxM1B overexpression increased VEGF expression, whereas blockade of FoxM1 expression suppressed VEGF expression in glioma cells. Transfection of FoxM1 into glioma cells directly activated the VEGF promoter, and inhibition of FoxM1 expression by FoxM1 siRNA suppressed VEGF promoter activation. We identified two FoxM1-binding sites in the VEGF promoter that specifically bound to the FoxM1 protein. Mutation of these FoxM1-binding sites significantly attenuated VEGF promoter activity. Furthermore, FoxM1 overexpression increased and inhibition of FoxM1 expression suppressed the angiogenic ability of glioma cells. Finally, an immunohistochemical analysis of 59 human glioblastoma specimens also showed a significant correlation between FoxM1 overexpression and elevated VEGF expression. Our findings provide both clinical and mechanistic evidence that FoxM1 contributes to glioma progression by enhancing VEGF gene transcription and thus tumor angiogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

IkappaB kinase beta (IKKbeta) is involved in tumor development and progression through activation of the nuclear factor (NF)-kappaB pathway. However, the molecular mechanism that regulates IKKbeta degradation remains largely unknown. Here, we show that a Cullin 3 (CUL3)-based ubiquitin ligase, Kelch-like ECH-associated protein 1 (KEAP1), is responsible for IKKbeta ubiquitination. Depletion of KEAP1 led to the accumulation and stabilization of IKKbeta and to upregulation of NF-kappaB-derived tumor angiogenic factors. A systematic analysis of the CUL3, KEAP1, and RBX1 genomic loci revealed a high percentage of genome loss and missense mutations in human cancers that failed to facilitate IKKbeta degradation. Our results suggest that the dysregulation of KEAP1-mediated IKKbeta ubiquitination may contribute to tumorigenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most pancreatic cancer patients present with inoperable disease or develop metastases after surgery. Conventional therapies are usually ineffective in treating metastatic disease. It is evident that novel therapies remain to be developed. Transforming growth factor beta (TGF-beta) plays a key role in cancer metastasis, signaling through the TGF-beta type I/II receptors (TbetaRI/II). We hypothesized that targeting TbetaRI/II kinase activity with the novel inhibitor LY2109761 would suppress pancreatic cancer metastatic processes. The effect of LY2109761 has been evaluated on soft agar growth, migration, invasion using a fibroblast coculture model, and detachment-induced apoptosis (anoikis) by Annexin V flow cytometric analysis. The efficacy of LY2109761 on tumor growth, survival, and reduction of spontaneous metastasis have been evaluated in an orthotopic murine model of metastatic pancreatic cancer expressing both luciferase and green fluorescence proteins (L3.6pl/GLT). To determine whether pancreatic cancer cells or the cells in the liver microenvironment were involved in LY2109761-mediated reduction of liver metastasis, we used a model of experimental liver metastasis. LY2109761 significantly inhibited the L3.6pl/GLT soft agar growth, suppressed both basal and TGF-beta1-induced cell migration and invasion, and induced anoikis. In vivo, LY2109761, in combination with gemcitabine, significantly reduced the tumor burden, prolonged survival, and reduced spontaneous abdominal metastases. Results from the experimental liver metastasis models indicate an important role for targeting TbetaRI/II kinase activity on tumor and liver microenvironment cells in suppressing liver metastasis. Targeting TbetaRI/II kinase activity on pancreatic cancer cells or the cells of the liver microenvironment represents a novel therapeutic approach to prevent pancreatic cancer metastasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Notch signaling is important in angiogenesis during embryonic development. However, the embryonic lethal phenotypes of knock-out and transgenic mice have precluded studies of the role of Notch post-natally. To develop a mouse model that would bypass the embryonic lethal phenotype and investigate the possible role of Notch signaling in adult vessel growth, we developed transgenic mice with Cre-conditional expression of the constitutively active intracellular domain of Notch1 (IC-Notch1). Double transgenic IC-Notch1/Tie2-Cre embryos with endothelial specific IC-Notch1 expression died at embryonic day 9.5. They displayed collapsed and leaky blood vessels and defects in angiogenesis development. A tetracycline-inducible system was used to express Cre recombinase postnatally in endothelial cells. In adult mice, IC-Notch1 expression inhibited bFGF-induced neovascularization and female mice lacked mature ovarian follicles, which may reflect the block in bFGF-induced angiogenesis required for follicle growth. Our results demonstrate that Notch signaling is important for both embryonic and adult angiogenesis and indicate that the Notch signaling pathway may be a useful target for angiogenic therapies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eph receptor tyrosine kinases and their ligands (ephrins) are key players during the development of the embryonic vasculature; however, their role and regulation in adult angiogenesis remain to be defined. Both receptors and ligands have been shown to be up-regulated in a variety of tumors. To address the hypothesis that hypoxia is an important regulator of Ephs/ephrins expression, we developed a mouse skin flap model of hypoxia. We demonstrate that our model truly represents segmental skin hypoxia by applying four independent methods: continuous measurement of partial cutaneous oxygen tension, monitoring of tissue lactate/pyruvate ratio, time course of hypoxia-inducible factor-1alpha (HIF-1alpha) induction, and localization of stabilized HIF-1alpha by immunofluorescence in the hypoxic skin flap. Our experiments indicate that hypoxia up-regulates not only HIF-1alpha and vascular endothelial growth factor (VEGF) expression, but also Ephs and ephrins of both A and B subclasses in the skin. In addition, we show that in Hep3B and PC-3 cells, the hypoxia-induced up-regulation of Ephs and ephrins is abrogated by small interfering RNA-mediated down-regulation of HIF-1alpha. These novel findings shed light on the role of this versatile receptor/ligand family in adult angiogenesis. Furthermore, our model offers considerable potential for analyzing distinct mechanisms of neovascularization in gene-targeted mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ephrin-B/EphB family proteins are implicated in bidirectional signaling and were initially defined through the function of their ectodomain sequences in activating EphB receptor tyrosine kinases. Ephrin-B1-3 are transmembrane proteins sharing highly conserved C-terminal cytoplasmic sequences. Here we use a soluble EphB1 ectodomain fusion protein (EphB1/Fc) to demonstrate that ephrin-B1 transduces signals that regulate cell attachment and migration. EphB1/Fc induced endothelial ephrin-B1 tyrosine phosphorylation, migration and integrin-mediated (alpha(v)beta(3) and alpha(5)beta(1)) attachment and promoted neovascularization, in vivo, in a mouse corneal micropocket assay. Activation of ephrin-B1 by EphB1/Fc induced phosphorylation of p46 JNK but not ERK-1/2 or p38 MAPkinases. By contrast, mutant ephrin-B1s bearing either a cytoplasmic deletion (ephrin-B1DeltaCy) or a deletion of four C-terminal amino acids (ephrin-B1DeltaPDZbd) fail to activate p46 JNK. Transient expression of intact ephin-B1 conferred EphB1/Fc migration responses on CHO cells, whereas the ephrin-B1DeltaCy and ephrin-B1DeltaPDZbd mutants were inactive. Thus ephrin-B1 transduces 'outside-in' signals through C-terminal protein interactions that affect integrin-mediated attachment and migration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE To observe changes in fundus autofluorescence 2 years after implantation of blue light-filtering (yellow-tinted) and ultraviolet light-filtering (colorless) intraocular lenses (IOLs). SETTING Department of Ophthalmology and Visual Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan, and the Department of Ophthalmology, University of Bern, Bern, Switzerland. DESIGN Prospective comparative observational study. METHODS Patients were enrolled who had cataract surgery with implantation of a yellow-tinted or colorless IOL and for whom images were obtained on which the fundus autofluorescence was measurable using the Heidelberg Retina Angiogram 2 postoperatively. The fundus autofluorescence in the images was classified into 8 abnormal patterns based on the classification of the International Fundus Autofluorescence Classification Group, The presence of normal fundus autofluorescence, geographic atrophy, and wet age-related macular degeneration (AMD) also was recorded. The fundus findings at baseline and 2 years postoperatively were compared. RESULTS Fifty-two eyes with a yellow-tinted IOL and 79 eyes with a colorless IOL were included. Abnormal fundus autofluorescence did not develop or increase in the yellow-tinted IOL group; however, progressive abnormal fundus autofluorescence developed or increased in 12 eyes (15.2%) in the colorless IOL group (P = .0016). New drusen, geographic atrophy, and choroidal neovascularization were observed mainly in the colorless IOL group. The incidence of AMD was statistically significantly higher in the colorless IOL group (P = .042). CONCLUSIONS Two years after cataract surgery, significant differences were seen in the progression of abnormal fundus autofluorescence between the 2 groups. The incidence of AMD was lower in eyes with a yellow-tinted IOL. FINANCIAL DISCLOSURE No author has a financial or proprietary interest in any material or method mentioned.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose In recent years, selective retina laser treatment (SRT), a sub-threshold therapy method, avoids widespread damage to all retinal layers by targeting only a few. While these methods facilitate faster healing, their lack of visual feedback during treatment represents a considerable shortcoming as induced lesions remain invisible with conventional imaging and make clinical use challenging. To overcome this, we present a new strategy to provide location-specific and contact-free automatic feedback of SRT laser applications. Methods We leverage time-resolved optical coherence tomography (OCT) to provide informative feedback to clinicians on outcomes of location-specific treatment. By coupling an OCT system to SRT treatment laser, we visualize structural changes in the retinal layers as they occur via time-resolved depth images. We then propose a novel strategy for automatic assessment of such time-resolved OCT images. To achieve this, we introduce novel image features for this task that when combined with standard machine learning classifiers yield excellent treatment outcome classification capabilities. Results Our approach was evaluated on both ex vivo porcine eyes and human patients in a clinical setting, yielding performances above 95 % accuracy for predicting patient treatment outcomes. In addition, we show that accurate outcomes for human patients can be estimated even when our method is trained using only ex vivo porcine data. Conclusion The proposed technique presents a much needed strategy toward noninvasive, safe, reliable, and repeatable SRT applications. These results are encouraging for the broader use of new treatment options for neovascularization-based retinal pathologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vasculogenesis is the process by which Endothelial Precursor Cells (EPCs) form a vasculature. This process has been traditionally regarded as an embryological process of vessel formation. However, as early as in the 60's the concept of postnatal vasculogenesis was introduced, with a strong resurface of this idea in recent years. Similarly, previous work on a mouse skin tumor model provided us with the grounds to consider the role of vasculogenesis during tumor formation. ^ We examined the contribution of donor bone marrow (BM)-derived cells to neovascularization in recipient nude mice with Ewing's sarcoma. Ewing's sarcoma is a primitive neuroectodermal tumor that most often affects children and young adults between 5 and 30 years of age. Despite multiple attempts to improve the efficacy of chemotherapy for the disease, the 2-year metastases-free survival rate for patients with Ewing's sarcoma has not improved over the past 15 years. New therapeutic approaches are therefore needed to reduce the mortality rate. ^ The contribution of BM endothelial precursor cells in the development of Ewing's sarcoma was examined using different strategies to track the donor-derived cells. Using a BMT model that takes advantage of MHC differences between donor and recipient mice, we have found that donor BM cells were involved in the formation of Ewing's sarcoma vasculature. ^ Cells responsible for this vasculogenesis activity may be located within the stem cell population of the murine BM. These stem cells would not only generate the hematopoietic lineage but they would also generate ECs. Bone marrow SP (Side Population) cells pertain to a subpopulation that can be identified using flow cytometric analysis of Hoechst 33342-stained BM. This population of cells has HSC activity. We have tested the ability of BM SP cells to contribute to vasculogenesis in Ewing's sarcoma using our MHC mismatched transplant model. Mice transplanted with SP cells developed tumor neovessels that were derived from the donor SP cells. Thus, SP cells not only replenished the hematopoietic system of the lethally irradiated mice, but also differentiated into a non-hematopoietic cell lineage and contributed to the formation of the tumor vasculature. ^ In summary, we have demonstrated that BM-derived cells are involved in the generation of the new vasculature during the growth of Ewing's sarcoma. The finding that vasculogenesis plays a role in Ewing's sarcoma development opens the possibility of using genetically modified BM-derived cells for the treatment of Ewing's sarcomas. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Angiogenin (Ang), an inducer of neovascularization, is secreted by several types of human tumor cells and appears critical for their growth. The murine anti-Ang monoclonal antibody (mAb) 26–2F neutralizes the activities of Ang and dramatically prevents the establishment and metastatic dissemination of human tumor cell xenografts in athymic mice. However, for use clinically, the well-documented problem of the human anti-globulin antibody response known to occur with murine antibodies requires resolution. As a result, chimeric as well as totally humanized antibodies are currently being evaluated as therapeutic agents for the treatment of several pathological conditions, including malignancy. Therefore, we have constructed a chimeric mouse/human antibody based on the structure of mAb 26–2F. Complementary DNAs from the light and heavy chain variable regions of mAb 26–2F were cloned, sequenced, and genetically engineered by PCR for subcloning into expression vectors that contain human constant region sequences. Transfection of these vectors into nonproducing mouse myeloma cells resulted in the secretion of fully assembled tetrameric molecules. The chimeric antibody (cAb 26–2F) binds to Ang and inhibits its ribonucleolytic and angiogenic activities as potently as mAb 26–2F. Furthermore, the capacities of cAb 26–2F and its murine counterpart to suppress the formation of human breast cancer tumors in athymic mice are indistinguishable. Thus cAb 26–2F, with its retained neutralization capability and likely decreased immunogenicity, may be of use clinically for the treatment of human cancer and related disorders where pathological angiogenesis is a component.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF) is a secreted endothelial cell mitogen that has been shown to induce vasculogenesis and angiogenesis in many organ systems and tumors. Considering the importance of VEGF to embryonic vascularization and survival, the effects of administered VEGF on developing or adult cerebrovasculature are unknown: can VEGF alter brain angiogenesis or mature cerebrovascular patterns? To examine these questions we exposed fetal, newborn, and adult rat cortical slice explants to graduated doses of recombinant VEGF. The effects of another known angiogenic factor, basic fibroblast growth factor (bFGF), were evaluated in a comparable manner. In addition, we infused VEGF via minipump into the adult cortex. Significant angiogenic effects were found in all VEGF experiments in a dose-responsive manner that were abolished by the addition of VEGF neutralizing antibody. Fetal and newborn explants had a highly complex network of branched vessels that immunoexpressed the flt-1 VEGF receptor, and flk-1 VEGF receptor expression was determined by reverse transcription–PCR. Adult explants had enlarged, dilated vessels that appeared to be an expansion of the existing network. All bFGF-treated explants had substantially fewer vascular profiles. VEGF infusions produced both a remarkable localized neovascularization and, unexpectedly, the expression of flt-1 on reactive astrocytes but not on endothelial cells. The preponderance of neovascularization in vitro and in vivo, however, lacked the blood–brain barrier (BBB) phenotype marker, GLUT-1, suggesting that in brain the angiogenic role of VEGF may differ from a potential BBB functional role, i.e., transport and permeability. VEGF may serve an important capacity in neovascularization or BBB alterations after brain injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have recently shown that VEGF functions as a survival factor for newly formed vessels during developmental neovascularization, but is not required for maintenance of mature vessels. Reasoning that expanding tumors contain a significant fraction of newly formed and remodeling vessels, we examined whether abrupt withdrawal of VEGF will result in regression of preformed tumor vessels. Using a tetracycline-regulated VEGF expression system in xenografted C6 glioma cells, we showed that shutting off VEGF production leads to detachment of endothelial cells from the walls of preformed vessels and their subsequent death by apoptosis. Vascular collapse then leads to hemorrhages and extensive tumor necrosis. These results suggest that enforced withdrawal of vascular survival factors can be applied to target preformed tumor vasculature in established tumors. The system was also used to examine phenotypes resulting from over-expression of VEGF. When expression of the transfected VEGF cDNA was continuously “on,” tumors became hyper-vascularized with abnormally large vessels, presumably arising from excessive fusions. Tumors were significantly less necrotic, suggesting that necrosis in these tumors is the result of insufficient angiogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show here that elevated levels of gonadotropins (luteinizing hormone and follicle stimulating hormone), as found in menopause or after ovariectomy, promote growth of human ovarian carcinoma by induction of tumor angiogenesis. Human epithelial ovarian cancer tumors progressed faster in ovariectomized mice. This induced growth could be attributed to the elevated levels of gonadotropins associated with loss of ovarian function because direct administration of gonadotropins also was effective in promoting tumor progression in vivo. On the other hand, gonadotropins had no direct effect on the proliferation of human ovarian cancer cells in vitro. Using MRI, we demonstrated that ovariectomy significantly (P < 0.02) induces neovascularization of human ovarian carcinoma spheroids implanted in nude mice. Moreover, conditioned medium of gonadotropin-treated human ovarian carcinoma cells showed increased mitogenic activity to bovine endothelial cells, and this activity could be blocked by neutralizing antibodies against luteinizing hormone and against vascular endothelial growth factor. Accordingly, gonadotropin stimulation resulted in a dose-dependent-induced expression of vascular endothelial growth factor in monolayer culture as well as in the outer proliferating cells of human ovarian cancer spheroids. These results demonstrate the significance of the elevated levels of gonadotropins, as found in menopause and in all ovarian cancer patients, on the progression of ovarian cancer and could explain the protective effect of estrogen replacement therapy. Based on these results, we suggest that hormonal therapy aimed at lowering the circulating levels of gonadotropins may possibly prolong remission in ovarian cancer by extending tumor dormancy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vascular endothelial growth factor C (VEGF-C) recently has been described to be a relatively specific growth factor for the lymphatic vascular system. Here we report that ectopic application of recombinant VEGF-C also has potent angiogenic effects in vivo. VEGF-C is sufficiently potent to stimulate neovascularization from limbal vessels in the mouse cornea. Similar to VEGF, the angiogenic response of corneas induced by VEGF-C is intensive, with a high density of new capillaries. However, the outgrowth of microvessels stimulated by VEGF-C was significantly longer than that induced by VEGF. In the developing embryo, VEGF-C was able to induce branch sprouts from the established blood vessels. VEGF-C also induced an elongated, spindle-like cell shape change and actin reorganization in both VEGF receptor (VEGFR)-2 and VEGFR-3-overexpressing endothelial cells, but not in VEGFR-1-expressing cells. Further, both VEGFR-2 and VEGFR-3 could mediate proliferative and chemotactic responses in endothelial cells on VEGF-C stimulation. Thus, VEGF-C may regulate physiological angiogenesis and participate in the development and progression of angiogenic diseases in addition to lymphangiogenesis.