990 resultados para National Science Foundation
Resumo:
Detecting and understanding anomalies in IP networks is an open and ill-defined problem. Toward this end, we have recently proposed the subspace method for anomaly diagnosis. In this paper we present the first large-scale exploration of the power of the subspace method when applied to flow traffic. An important aspect of this approach is that it fuses information from flow measurements taken throughout a network. We apply the subspace method to three different types of sampled flow traffic in a large academic network: multivariate timeseries of byte counts, packet counts, and IP-flow counts. We show that each traffic type brings into focus a different set of anomalies via the subspace method. We illustrate and classify the set of anomalies detected. We find that almost all of the anomalies detected represent events of interest to network operators. Furthermore, the anomalies span a remarkably wide spectrum of event types, including denial of service attacks (single-source and distributed), flash crowds, port scanning, downstream traffic engineering, high-rate flows, worm propagation, and network outage.
Resumo:
The Science of Network Service Composition has clearly emerged as one of the grand themes driving many of our research questions in the networking field today [NeXtworking 2003]. This driving force stems from the rise of sophisticated applications and new networking paradigms. By "service composition" we mean that the performance and correctness properties local to the various constituent components of a service can be readily composed into global (end-to-end) properties without re-analyzing any of the constituent components in isolation, or as part of the whole composite service. The set of laws that would govern such composition is what will constitute that new science of composition. The combined heterogeneity and dynamic open nature of network systems makes composition quite challenging, and thus programming network services has been largely inaccessible to the average user. We identify (and outline) a research agenda in which we aim to develop a specification language that is expressive enough to describe different components of a network service, and that will include type hierarchies inspired by type systems in general programming languages that enable the safe composition of software components. We envision this new science of composition to be built upon several theories (e.g., control theory, game theory, network calculus, percolation theory, economics, queuing theory). In essence, different theories may provide different languages by which certain properties of system components can be expressed and composed into larger systems. We then seek to lift these lower-level specifications to a higher level by abstracting away details that are irrelevant for safe composition at the higher level, thus making theories scalable and useful to the average user. In this paper we focus on services built upon an overlay management architecture, and we use control theory and QoS theory as example theories from which we lift up compositional specifications.
Resumo:
We study the impact of heterogeneity of nodes, in terms of their energy, in wireless sensor networks that are hierarchically clustered. In these networks some of the nodes become cluster heads, aggregate the data of their cluster members and transmit it to the sink. We assume that a percentage of the population of sensor nodes is equipped with additional energy resources-this is a source of heterogeneity which may result from the initial setting or as the operation of the network evolves. We also assume that the sensors are randomly (uniformly) distributed and are not mobile, the coordinates of the sink and the dimensions of the sensor field are known. We show that the behavior of such sensor networks becomes very unstable once the first node dies, especially in the presence of node heterogeneity. Classical clustering protocols assume that all the nodes are equipped with the same amount of energy and as a result, they can not take full advantage of the presence of node heterogeneity. We propose SEP, a heterogeneous-aware protocol to prolong the time interval before the death of the first node (we refer to as stability period), which is crucial for many applications where the feedback from the sensor network must be reliable. SEP is based on weighted election probabilities of each node to become cluster head according to the remaining energy in each node. We show by simulation that SEP always prolongs the stability period compared to (and that the average throughput is greater than) the one obtained using current clustering protocols. We conclude by studying the sensitivity of our SEP protocol to heterogeneity parameters capturing energy imbalance in the network. We found that SEP yields longer stability region for higher values of extra energy brought by more powerful nodes.
Resumo:
Wireless sensor networks have recently emerged as enablers of important applications such as environmental, chemical and nuclear sensing systems. Such applications have sophisticated spatial-temporal semantics that set them aside from traditional wireless networks. For example, the computation of temperature averaged over the sensor field must take into account local densities. This is crucial since otherwise the estimated average temperature can be biased by over-sampling areas where a lot more sensors exist. Thus, we envision that a fundamental service that a wireless sensor network should provide is that of estimating local densities. In this paper, we propose a lightweight probabilistic density inference protocol, we call DIP, which allows each sensor node to implicitly estimate its neighborhood size without the explicit exchange of node identifiers as in existing density discovery schemes. The theoretical basis of DIP is a probabilistic analysis which gives the relationship between the number of sensor nodes contending in the neighborhood of a node and the level of contention measured by that node. Extensive simulations confirm the premise of DIP: it can provide statistically reliable and accurate estimates of local density at a very low energy cost and constant running time. We demonstrate how applications could be built on top of our DIP-based service by computing density-unbiased statistics from estimated local densities.
Resumo:
Wireless sensor networks are characterized by limited energy resources. To conserve energy, application-specific aggregation (fusion) of data reports from multiple sensors can be beneficial in reducing the amount of data flowing over the network. Furthermore, controlling the topology by scheduling the activity of nodes between active and sleep modes has often been used to uniformly distribute the energy consumption among all nodes by de-synchronizing their activities. We present an integrated analytical model to study the joint performance of in-network aggregation and topology control. We define performance metrics that capture the tradeoffs among delay, energy, and fidelity of the aggregation. Our results indicate that to achieve high fidelity levels under medium to high event reporting load, shorter and fatter aggregation/routing trees (toward the sink) offer the best delay-energy tradeoff as long as topology control is well coordinated with routing.
Resumo:
One of TCP's critical tasks is to determine which packets are lost in the network, as a basis for control actions (flow control and packet retransmission). Modern TCP implementations use two mechanisms: timeout, and fast retransmit. Detection via timeout is necessarily a time-consuming operation; fast retransmit, while much quicker, is only effective for a small fraction of packet losses. In this paper we consider the problem of packet loss detection in TCP more generally. We concentrate on the fact that TCP's control actions are necessarily triggered by inference of packet loss, rather than conclusive knowledge. This suggests that one might analyze TCP's packet loss detection in a standard inferencing framework based on probability of detection and probability of false alarm. This paper makes two contributions to that end: First, we study an example of more general packet loss inference, namely optimal Bayesian packet loss detection based on round trip time. We show that for long-lived flows, it is frequently possible to achieve high detection probability and low false alarm probability based on measured round trip time. Second, we construct an analytic performance model that incorporates general packet loss inference into TCP. We show that for realistic detection and false alarm probabilities (as are achievable via our Bayesian detector) and for moderate packet loss rates, the use of more general packet loss inference in TCP can improve throughput by as much as 25%.
Resumo:
Routing protocols in wireless sensor networks (WSN) face two main challenges: first, the challenging environments in which WSNs are deployed negatively affect the quality of the routing process. Therefore, routing protocols for WSNs should recognize and react to node failures and packet losses. Second, sensor nodes are battery-powered, which makes power a scarce resource. Routing protocols should optimize power consumption to prolong the lifetime of the WSN. In this paper, we present a new adaptive routing protocol for WSNs, we call it M^2RC. M^2RC has two phases: mesh establishment phase and data forwarding phase. In the first phase, M^2RC establishes the routing state to enable multipath data forwarding. In the second phase, M^2RC forwards data packets from the source to the sink. Targeting hop-by-hop reliability, an M^2RC forwarding node waits for an acknowledgement (ACK) that its packets were correctly received at the next neighbor. Based on this feedback, an M^2RC node applies multiplicative-increase/additive-decrease (MIAD) to control the number of neighbors targeted by its packet broadcast. We simulated M^2RC in the ns-2 simulator and compared it to GRAB, Max-power, and Min-power routing schemes. Our simulations show that M^2RC achieves the highest throughput with at least 10-30% less consumed power per delivered report in scenarios where a certain number of nodes unexpectedly fail.
Resumo:
A novel technique to detect and localize periodic movements in video is presented. The distinctive feature of the technique is that it requires neither feature tracking nor object segmentation. Intensity patterns along linear sample paths in space-time are used in estimation of period of object motion in a given sequence of frames. Sample paths are obtained by connecting (in space-time) sample points from regions of high motion magnitude in the first and last frames. Oscillations in intensity values are induced at time instants when an object intersects the sample path. The locations of peaks in intensity are determined by parameters of both cyclic object motion and orientation of the sample path with respect to object motion. The information about peaks is used in a least squares framework to obtain an initial estimate of these parameters. The estimate is further refined using the full intensity profile. The best estimate for the period of cyclic object motion is obtained by looking for consensus among estimates from many sample paths. The proposed technique is evaluated with synthetic videos where ground-truth is known, and with American Sign Language videos where the goal is to detect periodic hand motions.
Resumo:
Scene flow methods estimate the three-dimensional motion field for points in the world, using multi-camera video data. Such methods combine multi-view reconstruction with motion estimation approaches. This paper describes an alternative formulation for dense scene flow estimation that provides convincing results using only two cameras by fusing stereo and optical flow estimation into a single coherent framework. To handle the aperture problems inherent in the estimation task, a multi-scale method along with a novel adaptive smoothing technique is used to gain a regularized solution. This combined approach both preserves discontinuities and prevents over-regularization-two problems commonly associated with basic multi-scale approaches. Internally, the framework generates probability distributions for optical flow and disparity. Taking into account the uncertainty in the intermediate stages allows for more reliable estimation of the 3D scene flow than standard stereo and optical flow methods allow. Experiments with synthetic and real test data demonstrate the effectiveness of the approach.
Resumo:
In gesture and sign language video sequences, hand motion tends to be rapid, and hands frequently appear in front of each other or in front of the face. Thus, hand location is often ambiguous, and naive color-based hand tracking is insufficient. To improve tracking accuracy, some methods employ a prediction-update framework, but such methods require careful initialization of model parameters, and tend to drift and lose track in extended sequences. In this paper, a temporal filtering framework for hand tracking is proposed that can initialize and reset itself without human intervention. In each frame, simple features like color and motion residue are exploited to identify multiple candidate hand locations. The temporal filter then uses the Viterbi algorithm to select among the candidates from frame to frame. The resulting tracking system can automatically identify video trajectories of unambiguous hand motion, and detect frames where tracking becomes ambiguous because of occlusions or overlaps. Experiments on video sequences of several hundred frames in duration demonstrate the system's ability to track hands robustly, to detect and handle tracking ambiguities, and to extract the trajectories of unambiguous hand motion.
Resumo:
Hand signals are commonly used in applications such as giving instructions to a pilot for airplane take off or direction of a crane operator by a foreman on the ground. A new algorithm for recognizing hand signals from a single camera is proposed. Typically, tracked 2D feature positions of hand signals are matched to 2D training images. In contrast, our approach matches the 2D feature positions to an archive of 3D motion capture sequences. The method avoids explicit reconstruction of the 3D articulated motion from 2D image features. Instead, the matching between the 2D and 3D sequence is done by backprojecting the 3D motion capture data onto 2D. Experiments demonstrate the effectiveness of the approach in an example application: recognizing six classes of basketball referee hand signals in video.
Resumo:
With the increasing demand for document transfer services such as the World Wide Web comes a need for better resource management to reduce the latency of documents in these systems. To address this need, we analyze the potential for document caching at the application level in document transfer services. We have collected traces of actual executions of Mosaic, reflecting over half a million user requests for WWW documents. Using those traces, we study the tradeoffs between caching at three levels in the system, and the potential for use of application-level information in the caching system. Our traces show that while a high hit rate in terms of URLs is achievable, a much lower hit rate is possible in terms of bytes, because most profitably-cached documents are small. We consider the performance of caching when applied at the level of individual user sessions, at the level of individual hosts, and at the level of a collection of hosts on a single LAN. We show that the performance gain achievable by caching at the session level (which is straightforward to implement) is nearly all of that achievable at the LAN level (where caching is more difficult to implement). However, when resource requirements are considered, LAN level caching becomes much more desirable, since it can achieve a given level of caching performance using a much smaller amount of cache space. Finally, we consider the use of organizational boundary information as an example of the potential for use of application-level information in caching. Our results suggest that distinguishing between documents produced locally and those produced remotely can provide useful leverage in designing caching policies, because of differences in the potential for sharing these two document types among multiple users.
Resumo:
We analyzed the logs of our departmental HTTP server http://cs-www.bu.edu as well as the logs of the more popular Rolling Stones HTTP server http://www.stones.com. These servers have very different purposes; the former caters primarily to local clients, whereas the latter caters exclusively to remote clients all over the world. In both cases, our analysis showed that remote HTTP accesses were confined to a very small subset of documents. Using a validated analytical model of server popularity and file access profiles, we show that by disseminating the most popular documents on servers (proxies) closer to the clients, network traffic could be reduced considerably, while server loads are balanced. We argue that this process could be generalized so as to provide for an automated demand-based duplication of documents. We believe that such server-based information dissemination protocols will be more effective at reducing both network bandwidth and document retrieval times than client-based caching protocols [2].
Resumo:
Two polymorphic types σ and τ are said to be bicoercible if there is a coercion from σ to τ and conversely. We give a complete equational axiomatization of bicoercible types and prove that the relation of bicoercibility is decidable.
Resumo:
A problem with Speculative Concurrency Control algorithms and other common concurrency control schemes using forward validation is that committing a transaction as soon as it finishes validating, may result in a value loss to the system. Haritsa showed that by making a lower priority transaction wait after it is validated, the number of transactions meeting their deadlines is increased, which may result in a higher value-added to the system. SCC-based protocols can benefit from the introduction of such delays by giving optimistic shadows with high value-added to the system more time to execute and commit instead of being aborted in favor of other validating transactions, whose value-added to the system is lower. In this paper we present and evaluate an extension to SCC algorithms that allows for commit deferments.