967 resultados para NORMAL HUMAN FIBROBLASTS
Resumo:
Deficiency of pyruvate dehydrogenase complex (PDHC) is the most common disorder leading to lactic acidemia. Phosphorylation of specific serine residues of the E1-alpha subunit of the PDHC by pyruvate dehydrogenase kinase (PDK) inactivates the enzyme, whereas dephosphorylation restores PDHC activity. We recently found that phenylbutyrate prevents phosphorylation of the E1-alpha subunit of the branched-chain ketoacid dehydrogenase complex (BCKDC) and reduces plasma concentrations of neurotoxic branched chain amino acids in patients with maple syrup urine disease (MSUD), due to the deficiency of BCKDC. We hypothesized that, similarly to BCKDC, phenylbutyrate enhances PDHC enzymatic activity by increasing the portion of unphosphorylated enzyme. To test this hypothesis, we treated wild-type human fibroblasts at different concentrations of phenylbutyrate and found that it reduces the levels of phosphorylated E1-alpha as compared to untreated cells. To investigate the effect of phenylbutyrate in vivo, we administered phenylbutyrate to C57B6 wild-type mice and we detected a significant increase in Pdhc enzyme activity and a reduction of phosphorylated E1-alpha subunit in brains and muscles as compared to saline treated mice. Being a drug already approved for human use, phenylbutyrate has great potential for increasing the residual enzymatic activity of PDHC and to improve the clinical phenotype of PDHC deficiency.
Resumo:
Stimulation ofcortisol secretion by food intake has been implicated in the pathogenesis of some cases of ACTH-independent Cushing's syndrome, via an aberrant response of the adrenal glands to gastric inhibitory polypeptide (GIP). We report here a novel case of food-dependent Cushing's syndrome in a patient with bilateral macronodular adrenal hyperplasia. In this patient we were able to confirm a paradoxical stimulation of cortisol secretion by GIP in vivo as well as in vitro on dispersed tumor adrenal cells obtained at surgery. In addition to GIP, in vitro stimulation of these cultured tumor adrenal cells with leptin, the secreted product of the adipocyte, induced cortisol secretion. By comparison, no such stimulation was observed in vitro in adrenal cells obtained from another patient with bilateral macronodular adrenal hyperplasia and Cushing's syndrome that did not depend on food intake, in tumor cells obtained from a solitary cortisol-secreting adrenal adenoma, and in normal human adrenocortical cells. These results demonstrate that as in previously described cases of food-dependent Cushing's syndrome, GIP stimulated cortisol secretion from the adrenals of the patient reported here. Therefore, they indicate that such a paradoxical response probably represents the hallmark of this rare condition. In addition, they suggest that leptin, which normally inhibits stimulated cortisol secretion in humans, participated in cortisol hypersecretion in this case. Further studies in other cases of food-dependent Cushing's syndrome, however, will be necessary to better ascertain the pathophysiological significance of this finding.
Resumo:
BACKGROUND: It has been proposed that the innate immune system plays a central role in driving the autoimmune T-cell cascade leading to psoriasis; however, there is no direct evidence for this. OBSERVATIONS: We observed aggravation and spreading of a psoriatic plaque when treated topically with the toll-like receptor (TLR) 7 agonist imiquimod. The exacerbation of psoriasis was accompanied by a massive induction of lesional type I interferon activity, detected by MxA expression after imiquimod therapy. Since imiquimod induces large amounts of type I interferon production from TLR7-expressing plasmacytoid dendritic cell precursors (PDCs), the natural interferon-producing cells of the peripheral blood, we asked whether PDCs are present in psoriatic skin. We identified high numbers of PDCs in psoriatic skin lesions (up to 16% of the total dermal infiltrate) based on their coexpression of BDCA2 and CD123. By contrast, PDCs were present at very low levels in atopic dermatitis and not detected in normal human skin. CONCLUSIONS: This study shows that psoriasis can be driven by the innate immune system through TLR ligation. Furthermore, our finding that large numbers of PDCs infiltrate psoriatic skin suggests a role of lesional PDCs as type I interferon-producing targets for the TLR7 agonist imiquimod.
Resumo:
Antibody-dependent cell-mediated cytotoxicity (ADCC) against human colon carcinoma cells grown in vitro was demonstrated with two specific rabbit anti-carcinoembryonic antigen (cea) antisera. The same antisera did not lyse the colon carcinoma cells in the presence of complement but without lymphocytes. The normal human lymphocytes in the absence of anti-CEA antiserum had a very low cytotoxic activity during the three hours 51Cr release assay used in this study. Two colon carcinoma cell lines, HT-29 and Co-115, expressing CEA on their surface as demonstrated by immunofluorescence, were significantly lysed in the ADCC test, whereas control tumor cell lines, not expressing CEA, were not affected by the anti-CEA sera and the lymphocytes. The specificity of the reaction was further demonstrated by the inhibition of antibody-dependent cell-mediated cytotoxicity after the addition of increasing amounts of purified CEA to the antiserum. The absorption of the anti-CEA antisera was controlled by radioimmunoassay. Absorption of the antisera by normal lung extracts and red cells of different blood groups did not decrease the cytotoxicity.
Resumo:
Massively parallel signature sequencing (MPSS) generates millions of short sequence tags corresponding to transcripts from a single RNA preparation. Most MPSS tags can be unambiguously assigned to genes, thereby generating a comprehensive expression profile of the tissue of origin. From the comparison of MPSS data from 32 normal human tissues, we identified 1,056 genes that are predominantly expressed in the testis. Further evaluation by using MPSS tags from cancer cell lines and EST data from a wide variety of tumors identified 202 of these genes as candidates for encoding cancer/testis (CT) antigens. Of these genes, the expression in normal tissues was assessed by RT-PCR in a subset of 166 intron-containing genes, and those with confirmed testis-predominant expression were further evaluated for their expression in 21 cancer cell lines. Thus, 20 CT or CT-like genes were identified, with several exhibiting expression in five or more of the cancer cell lines examined. One of these genes is a member of a CT gene family that we designated as CT45. The CT45 family comprises six highly similar (>98% cDNA identity) genes that are clustered in tandem within a 125-kb region on Xq26.3. CT45 was found to be frequently expressed in both cancer cell lines and lung cancer specimens. Thus, MPSS analysis has resulted in a significant extension of our knowledge of CT antigens, leading to the discovery of a distinctive X-linked CT-antigen gene family.
Resumo:
Prolyl oligopeptidases cleave peptides on the carboxy side of internal proline residues and their inhibition has potential in the treatment of human brain disorders. Using our docking program fitted, we have designed a series of constrained covalent inhibitors, built from a series of bicyclic scaffolds, to study the optimal shape required for these small molecules. These structures bear nitrile functional groups that we predicted to covalently bind to the catalytic serine of the enzyme. Synthesis and biological assays using human brain-derived astrocytic cells and endothelial cells and human fibroblasts revealed that these compounds act as selective inhibitors of prolyl oligopeptidase activity compared to prolyl-dipeptidyl-aminopeptidase activity, are able to penetrate the cells and inhibit intracellular activities in intact living cells. This integrated computational and experimental study shed light on the binding mode of inhibitors in the enzyme active site and will guide the design of future drug-like molecules.
Resumo:
We present here the synthesis of a highly O-carboxymethylated chitosan derivative. First, an improved protocol for the two-step synthesis of N-trimethyl chitosan (TMC) from chitosan was developed, yielding a maximum degree of quaternization (DQ) of up to 46.6%. Successively, the chitosan derivative O-carboxymethyl-N-trimethyl chitosan (CMTMC) was synthesized from the TMC obtained by applying an optimized synthesis pathway. In contrast to previous reports, the optimized protocol was shown to yield very high rates (>85%) of O-carboxymethylation of CMTMC, as shown by (1)H NMR and heteronuclear single quantum correlation ((1)H-(13)C HSQC). Finally, in vitro cytocompatibility (viability >80%) of the polymer was demonstrated using human fibroblasts.
Resumo:
Endothelial cell release of nitric oxide (NO) is a defining characteristic of nondiseased arteries, and abnormal endothelial NO release is both a marker of early atherosclerosis and a predictor of its progression and future events. Healthy coronaries respond to endothelial-dependent stressors with vasodilatation and increased coronary blood flow (CBF), but those with endothelial dysfunction respond with paradoxical vasoconstriction and reduced CBF. Recently, coronary MRI and isometric handgrip exercise (IHE) were reported to noninvasively quantify coronary endothelial function (CEF). However, it is not known whether the coronary response to IHE is actually mediated by NO and/or whether it is reproducible over weeks. To determine the contribution of NO, we studied the coronary response to IHE before and during infusion of N(G)-monomethyl-l-arginine (l-NMMA, 0.3 mg·kg(-1)·min(-1)), a NO-synthase inhibitor, in healthy volunteers. For reproducibility, we performed two MRI-IHE studies ∼8 wk apart in healthy subjects and patients with coronary artery disease (CAD). Changes from rest to IHE in coronary cross-sectional area (%CSA) and diastolic CBF (%CBF) were quantified. l-NMMA completely blocked normal coronary vasodilation during IHE [%CSA, 12.9 ± 2.5 (mean ± SE, placebo) vs. -0.3 ± 1.6% (l-NMMA); P < 0.001] and significantly blunted the increase in flow [%CBF, 47.7 ± 6.4 (placebo) vs. 10.6 ± 4.6% (l-NMMA); P < 0.001]. MRI-IHE measures obtained weeks apart strongly correlated for CSA (P < 0.0001) and CBF (P < 0.01). In conclusion, the normal human coronary vasoactive response to IHE is primarily mediated by NO. This noninvasive, reproducible MRI-IHE exam of NO-mediated CEF promises to be useful for studying CAD pathogenesis in low-risk populations and for evaluating translational strategies designed to alter CAD in patients.
Resumo:
PURPOSE: To characterize perifoveal intraretinal cavities observed around full-thickness macular holes (MH) using en face optical coherence tomography and to establish correlations with histology of human and primate maculae. DESIGN: Retrospective nonconsecutive observational case series. METHODS: Macular en face scans of 8 patients with MH were analyzed to quantify the areas of hyporeflective spaces, and were compared with macular flat mounts and sections from 1 normal human donor eye and 2 normal primate eyes (Macaca fascicularis). Immunohistochemistry was used to study the distribution of glutamine synthetase, expressed by Müller cells, and zonula occludens-1, a tight-junction protein. RESULTS: The mean area of hyporeflective spaces was lower in the inner nuclear layer (INL) than in the complex formed by the outer plexiform (OPL) and the Henle fiber layers (HFL): 5.0 × 10(-3) mm(2) vs 15.9 × 10(-3) mm(2), respectively (P < .0001, Kruskal-Wallis test). In the OPL and HFL, cavities were elongated with a stellate pattern, whereas in the INL they were rounded and formed vertical cylinders. Immunohistochemistry confirmed that Müller cells followed a radial distribution around the fovea in the frontal plane and a "Z-shaped" course in the axial plane, running obliquely in the OPL and HFL and vertically in the inner layers. In addition, zonula occludens-1 co-localized with Müller cells within the complex of OPL and HFL, indicating junctions in between Müller cells and cone axons. CONCLUSION: The dual profile of cavities around MHs correlates with Müller cell morphology and is consistent with the hypothesis of intra- or extracellular fluid accumulation along these cells.
Resumo:
TRAF-interacting protein (TRIP) is a ubiquitously expressed nucleolar E3 ubiquitin ligase. Ubiquitination of proteins is a post-translational modification, which decides on the cellular fate of the protein. TRIP in vivo substrate has not been yet identified. However, TRIP has been shown to play an important role in cellular proliferation, especially in keratinocytes. TRIP was found to be up-regulated in basal cell carcinoma (BCC) at the mRNA level. This prompted us to elucidate its role in skin proliferative diseases such as cancer by analyzing its expression in BCCs at protein level and in squamous cell carcinoma (SCC) at mRNA and protein level. To that purpose, we performed a real-time PCR (qPCR) analysis followed by an immunohistochemistry (IHC) on formalin-fixed, paraffin-embedded (FFPE) biopsies. The real-time PCR was performed on 12 RNA samples of which 6 were extracted from SCC biopsies and 6 from normal human skin. The results were statistically insignificant. Further analyses are needed on new RNA samples. The IHC assay was performed on 20 biopsies from BCCs, 21 biopsies from SCCs and on 5 tissues from normal human skin. The results obtained showed an extensive expression of TRIP in keratinocytes nuclei. Due to various limitations related to the technique and to doubts about preservation of the antigens in the tissues from normal human skin, we could not highlight a clear difference in TRIP expression between the different tissues. In conclusion, further analyses are needed on new RNA samples (qPCR) and on better preserved FFPE tissues from normal skin (IHC) to assess TRIP relative expression in BCCs and SCCs versus normal human skin.
Resumo:
Natural geranylhydroquinone 1 and geranyl-p-methoxyphenol 2 were prepared by Electrophilic Aromatic Substitution (EAS) reactions between geraniol and 1,4-hydroquinone or p-methoxyphenol respectively, using BF3∙Et2O as a catalyst. Furthermore, natural geranylquinone 3, geranyl-1,4-dimethoxyquinone 4 and the new geranyl-4-methoxyphenyl acetate 5 were obtained by chemical transformations of 1 and 2. The compounds were evaluated for their in vitro cytotoxicity activities against cultured human cancer cells of PC-3 human prostate cancer, MCF-7 and MDA-MB-231 breast carcinoma, and Dermal Human Fibroblasts DHF. IC50 values were in the µM range.
Resumo:
Incidence of nonmelanoma skin cancer (NMSC) is increasing. Ultraviolet (UV) –light is a major risk factor for the development of cutaneous SCC. Cutaneous SCCs that develop to chronic ulcers are known to progress and metastasize more easily than UV-induced SCCs. Matrix metalloproteinases (MMPs) are a group of proteolytic enzymes which are suggested to have a role in cancer growth and invasion. The molecular background for progression of cutaneous SCC was examined by immunohistochemistry (IHC) using tissue samples of recessive dystrophic epidermolysis bullosa (RDEB) –associated SCC, sporadic UV-induced SCC, and SCC precursors. IHC studies using tissue microarray (TMA) technique revealed overexpression of MMP-7 and MMP-13 in SCC tumor cells. MMP-7 expression was enhanced especially in the SCC tumor cells of the RDEB –associated SCCs. Studies with SCC cell lines showed that tumor cell derived MMP-7 activated heparin binding epidermal growth factor –like growth factor (HB-EGF) which enhanced the growth of SCC tumor cells. Further, it was shown that type VII collagen (COL7) is expressed in sporadic SCC tumor cells. Interestingly, it was shown that SCC –associated MMP-13 is capable of cleaving COL7 in vitro. COL7 cleavage may have a role in the progression of cutaneous SCC. Studies on serine proteinase inhibitor gene family using SCC tumor cell gene array, quantitative real-time PCR, SCC cell lines, normal human epidermal keratinocytes and IHC of TMA samples showed that serine proteinase inhibitor clade A, member 1 (serpinA1, alpha-1-antitrypsin) is expressed and produced by human SCC tumor cells but not by normal keratinocytes. Moreover, serpinA1 expression was shown to correlate with the progression of cutaneous SCC using transformed HaCaT-cell lines and mouse chemically induced skin SCC model. SerpinA1 may serve as a novel biomarker for the progression of cutaneous SCC. This study elucidated putative mechanisms of the progression of cutaneous SCC and revealed novel biomarker candidates for the progression of SCC of the skin.
Resumo:
The epidermis is the upper layer of the skin and keratinocytes are its most abundant cells. Tight junctions are cell junctions located in the granular layer of the epidermis. They maintain the polarity of the cells and regulate the movement of water-soluble molecules. Epidermal tight junctions may lose their integrity when there are defects in intercellular calcium regulation. Hailey-Hailey and Darier´s disease are dominantly inherited, blistering skin diseases. Hailey-Hailey disease is caused by mutations in the ATP2C1 gene encoding a calcium/manganese ATPase SPCA1 of the Golgi apparatus. Darier´s disease is caused by mutations in the ATP2A2 gene encoding a calcium ATPase SERCA2 of the endoplasmic reticulum. p38 regulates the differentiation of keratinocytes. The overall regulation of epidermal tight junctions is not well understood. The present study examined the regulation of tight junctions in the human epidermis with a focus on calcium ATPases and p38. Skin from Hailey-Hailey and Darier´s disease patients was studied by using immunofluorescence labeling which targeted intercellular junction proteins. Transepidermal water loss was also measured. ATP2C1 gene expression was silenced in cultured keratinocytes, by siRNA, which modeled Hailey-Hailey disease. Expression of intercellular junction proteins was studied at the mRNA and protein levels. Squamous cell carcinoma and normal human keratinocytes were used as a model for impaired and normal keratinocyte differentiation, and the role of p38 isoforms alpha and delta in the regulation of intercellular junction proteins was studied. Both p38 isoforms were silenced by adenovirus cell transduction, chemical inhibitors or siRNA and keratinocyte differentiation was assessed. The results of this thesis revealed that: i.) intercellular junction proteins are expressed normally in acantholytic skin areas of patients with Hailey-Hailey or Darier´s disease but the localization of ZO-1 expanded to the stratum spinosum; ii.) tight junction proteins, claudin-1 and -4, are regulated by ATP2C1 in non-differentiating keratinocytes; and iii.) p38 delta regulates the expression of tight junction protein ZO-1 in proliferating keratinocytes and in squamous cell carcinoma derived cells. ZO-1 silencing, however, did not affect the expression of other tight junction proteins, suggesting that they are differently regulated. This thesis introduces new mechanisms involved in the regulation of tight junctions revealing new interactions. It provides novel evidence linking intracellular calcium regulation and tight junctions.
Resumo:
A new metalloendopeptidase was purified to apparent homogeneity from a homogenate of normal human brain using successive steps of chromatography on DEAE-Trisacryl, hydroxylapatite and Sephacryl S-200. The purified enzyme cleaved the Gly33-Leu34 bond of the 25-35 neurotoxic sequence of the Alzheimer ß-amyloid 1-40 peptide producing soluble fragments without neurotoxic effects. This enzyme activity was only inhibited by divalent cation chelators such as EDTA, EGTA and o-phenanthroline (1 mM) and was insensitive to phosphoramidon and captopril (1 µM concentration), specific inhibitors of neutral endopeptidase (EC 3.4.24.11) and angiotensin-converting enzyme (EC 3.4.15.1), respectively. The high affinity of this human brain endopeptidase for ß-amyloid 1-40 peptide (Km = 5 µM) suggests that it may play a physiological role in the degradation of this substance produced by normal cellular metabolism. It may also be hypothesized that the abnormal accumulation of the amyloid ß-protein in Alzheimer's disease may be initiated by a defect or an inactivation of this enzyme.
Resumo:
Low and high molecular weight kininogens (LK and HK), containing 409 and 626 amino acids with masses of ~65 and 120 kDa after glycosylation, respectively, are coded by a single gene mapped to the human chromosome 3 by alternative splicing of the transcribed mRNA. The NH2-termini Glu1-Thr383 region, identical in LK and HK, contains bradykinin (BK) moieties Arg363-Arg371. LK, HK and their kinin products Lys-BK and BK are involved in several biologic processes. They are evolutionarily conserved and only 7 patients, all apparently normal, have been reported to lack them. In one of these patients (Williams' trait), a codon mutation (Arg178 ® stop) has been blamed for the absence of LK and HK. However, using Western blots with 2 monoclonal anti-HK antibodies, one that recognizes the region common to LK and HK and the other that recognizes only HK, I detected ~110-kDa bands in the plasma of this LK/HK-deficient patient vs ~120-kDa bands in normal human and ape plasmas. With polyclonal anti-Lys-BK antibody, which strongly detects BK cleaved at its COOH-terminus in purified HK, I detected ~110-kDa bands in the normal and the deficient plasmas. Western blots with a monoclonal anti-prekallikrein (PK) antibody showed that surface activation of PK and distribution of PK activation products, both dependent on HK, were similar in these plasmas. These findings suggest that a mutant gene yielded a kininogen-like species possibly involving aberrant mRNA splicing - structurally different from normal HK, but apparently with the capacity to carry out seemingly vital HK functions.