904 resultados para NEURAL PLASTICITY
Resumo:
The goal of this study was to propose a new functional magnetic resonance imaging (fMRI) paradigm using a language-free adaptation of a 2-back working memory task to avoid cultural and educational bias. We additionally provide an index of the validity of the proposed paradigm and test whether the experimental task discriminates the behavioural performances of healthy participants from those of individuals with working memory deficits. Ten healthy participants and nine patients presenting working memory (WM) deficits due to acquired brain injury (ABI) performed the developed task. To inspect whether the paradigm activates brain areas typically involved in visual working memory (VWM), brain activation of the healthy participants was assessed with fMRIs. To examine the task's capacity to discriminate behavioural data, performances of the healthy participants in the task were compared with those of ABI patients. Data were analysed with GLM-based random effects procedures and t-tests. We found an increase of the BOLD signal in the specialized areas of VWM. Concerning behavioural performances, healthy participants showed the predicted pattern of more hits, less omissions and a tendency for fewer false alarms, more self-corrected responses, and faster reaction times, when compared with subjects presenting WM impairments. The results suggest that this task activates brain areas involved in VWM and discriminates behavioural performances of clinical and non-clinical groups. It can thus be used as a research methodology for behavioural and neuroimaging studies of VWM in block-design paradigms.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biochemistry, Neuroscience
Resumo:
This article aims to apply the concepts associated with artificial neural networks (ANN) in the control of an autonomous robot system that is intended to be used in competitions of robots. The robot was tested in several arbitrary paths in order to verify its effectiveness. The results show that the robot performed the tasks with success. Moreover, in the case of arbitrary paths the ANN control outperforms other methodologies, such as fuzzy logic control (FLC).
Resumo:
OBJECTIVES: 1) To determine trends in prevalence of neural tube defects and the impact of therapeutic abortion. 2) To review perinatal management of spina bifida. DESIGN: All spontaneous and therapeutic abortions, still births and live births affected by neural tube defects registered in Alfredo da Costa Maternity in Lisbon, from 1983 to 1992, were retrospectively analysed. RESULTS: Eighty-two cases with neural tube defects are reported and myelomeningocele and anencephaly++ were the most frequent ones. Total prevalence for all defects was 0.78:1000 births with a small upward trend during the last two years. Birth prevalence was 0.6:1000, with a clear downward trend, due to therapeutic abortion. Prenatal diagnosis improved significantly, from 9% of all defects detected in 1983-87 to 77.5% in 1988-92. Since 1989, all cases of anencephaly were detected before birth. Most cases of spina bifida were vaginally delivered, and elective cesarean section occurred in 4. Early closure of the defect was undertaken in 87.6% of the newborns with open spina bifida. CONCLUSION: While total prevalence of neural tube defects remained stable, with only a small upward trend, prenatal diagnosis and therapeutic abortion resulted in a 56.3% fall in birth prevalence. Optimal management of open spina bifida demands a multidisciplinary team with an individual program for each case.
Resumo:
Microbiota is a set of microorganisms resident in gut ecosystem that reacts to psychological stressful stimuli, and is involved in depressed or anxious status in both animals and human being. Interestingly, a series of studies have shown the effects of physical exercise on gut microbiota dynamics, suggesting that gut microbiota regulation might act as one mediator for the effects of exercise on the brain. Recent studies found that gut microbiota dynamics are also regulated by metabolism changes, such as through physical exercise or diet change. Interestingly, physical exercise modulates different population of gut bacteria in compared to food restriction or rich diet, and alleviates gut syndromes to toxin intake. Gut microbiota could as well contribute to the beneficial effects of exercise on cognition and emotion, either directly through serotonin signaling or indirectly by modulating metabolism and exercise performance.
Resumo:
The water-rat Nectomys squamipes is mostly important non-human host in schistosomiasis mansoni transmission in Brazil, due to its susceptibility, high abundance and water-contact pattern. During experimental infection of N. squamipes with Schistosoma mansoni, adult worms show phenotypic plasticity. This finding led us to investigate whether biological behavior is also affected. This was assessed comparing the biological characteristics of four S. mansoni strains: BE (State of Belém do Pará), CE (State of Pernambuco), CMO (State of Rio Grande do Norte) and SJ (State of São Paulo) using laboratory-bred N. squamipes. The infection was monitored by determination of the pre-patent period, fecal egg output, egg viability, intestinal egg count and, infectivity rate. No biological modification was observed in these parameters. Overall results highlight that N. squamipes was susceptible to several S. mansoni strains, suggesting that it might contribute to the maintenance of schistosomiasis mansoni in Brazil.
Resumo:
In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.
Resumo:
In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.
Epigenetics and behavioural plasticity: drosophila euchromatin histone metiltransferase and foraging
Resumo:
A thesis submitted in fulfillment of the requirements for the degree of Masters in Molecular Genetics and Biomedicine
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology, Computational Biology.
Resumo:
Throughout the brain, patterns of activity in postsynaptic neurons influence the properties of synaptic inputs. Such feedback regulation is central to neural network stability that underlies proper information processing and feature representation in the central nervous system. At the cellular level, tight coupling of presynaptic and postsynaptic function is fundamental to neural computation and synaptic plasticity. The cohort of protein complexes at the pre and postsynaptic membrane allows for tight synapse-specific segregation and integration of diverse molecular and electrical signals.(...)