997 resultados para NEONATAL MOUSE OVARY
Resumo:
As the use of technological devices in everyday environments becomes more prevalent, it is clear that access to these devices has become an important aspect of occupational performance. Children are increasingly required to competently manipulate technology such as the computer to fulfil occupational roles of student and player. Occupational therapists are in a position to facilitate the successful interface between children and standard computer technologies. The literature has supported the use of direct manipulation interfaces in computing that requires mastery of devices such as the mouse. Identification of children likely to experience difficulties with mouse use will inform the development of appropriate methods of intervention promoting mouse skill and further enhance participation in occupational tasks. The aim of this paper is to discuss the development of an assessment of mouse proficiency for children. It describes the construction of the assessment, the content of the test, and its content validity.
Resumo:
Because of subtle differences between mouse and human skin, mice have traditionally not been an ideal model to study melanoma development. Understanding of the molecular mechanisms of melanoma predisposition, however, has been greatly improved by modeling various pathway defects in the mouse. This review analyzes the latest developments in mouse models of melanoma, and summarizes what these may indicate about the development of this neoplasm in humans. Mutations of genes involved in human melanoma have been recapitulated with some unexpected results, particularly with respect to the role of the two transcripts (Ink4a and Arf) encoded by the Cdkn2a locus. Both the Ink4a/pRb and Arf/p53 pathways are involved in melanoma development in mice, and possible mechanisms of cross-talk between the two pathways are discussed. We also know from mouse models that Ras/mitogen-activated protein kinase pathway activation is very important in melanoma development, either through direct activation of Ras (e.g., Hras G12V), or via activation of Ras-effector pathways by other oncogenes (e.g., Ret, Hgf/Sf). Ras can cooperate with the Arf/p53 pathway, and probably the Ink4a/Rb pathway, to induce melanoma. These three growth regulation pathways (Ink4a/pRb, Arf/p53, and Ras/mitogen-activated protein kinase) seem to represent three major axes of melanoma development in mice. Finally, we summarize experiments using genetically modified mice that have given indications of the intensity and timing of ultraviolet radiation exposure that may be most responsible for melanoma development.
Resumo:
The association of sustained cerebral edema with poor neurological outcome following hypoxia-ischaemia in the neonate suggests that measurement of cerebral edema may allow early prediction of outcome in these infants. Direct measurements of cerebral impedance have been widely used in animal studies to monitor cerebral edema, but such invasive measurements are not possible in the human neonate. This study investigated the ability of noninvasive cerebral impedance measurements to detect cerebral edema following hypoxia-ischaemia. One-day-old piglets were anaesthetized, intubated and ventilated. Hypoxia was induced by reducing the inspired oxygen concentration to 4-6% O-2. Noninvasive cerebral bioimpedance was measured using gel electrodes attached to the scalp. Cerebral bioimpedance was also measured directly by insertion of two silver-silver chloride electrodes subdurally. Noninvasive and invasive measurements were made before, during and after hypoxia. Whole body impedance was measured to assess overall fluid movements. Intracranial pressure was measured continuously via a catheter inserted subdurally, as an index of cerebral edema. There was good agreement between noninvasive and invasive measurements of cerebral impedance although externally obtained responses were attenuated. Noninvasive measurements were also well correlated with intracranial pressure. Whole body impedance changes did not account for increases in noninvasively measured cerebral impedance. Results suggest that noninvasive cerebral impedance measurements do reflect intracranial events, and are able to detect cerebral edema following hypoxia-ischaemia in the neonate. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Filaggrin is a keratin filament associated protein that is expressed in granular layer keratinocytes and derived by sequential proteolysis from a polyprotein precursor termed profilaggrin. Depending on the species, each profilaggrin molecule contains between 10 and 20 filaggrin subunits organized as tandem repeats with a calcium-binding domain at the N-terminal end. We now report the characterization of the complete mouse gene. The structural organization of the mouse gene is identical to the human profilaggrin gene and consists of three exons with a 4 kb intron within the 5' noncoding region and a 1.7 kb intron separating the sequences encoding the calcium-binding EF-hand motifs. A processed pseudogene was found embedded within the second intron. The third and largest exon encodes the second EF-hand, a basic domain (designated the B-domain) followed by 12 filaggrin repeats and a unique C-terminal tail domain. A polyclonal anti-body raised against the conceptually translated sequence of the B-domain specifically stained keratohyalin granules and colocalized with a filaggrin antibody in granular layer cells. In upper granular layer cells, B-domain containing keratohyalin granules were in close apposition to the nucleus and, in some cells, appeared to be completely engulfed by the nucleus. In transition layer cells, B-domain staining was evident in the nucleus whereas filaggrin staining remained cytoplasmic. Nuclear staining of the B-domain was also observed in primary mouse keratinocytes induced to differentiate. This study has also revealed significant sequence homology between the mouse and human promoter sequences and in the calcium-binding domain but the remainder of the protein-coding region shows substantial divergence.
Resumo:
The mouse hnRNP A2/B1/B0 gene has been cloned using a PCR-based strategy and sequenced. Analysis of this sequence showed that the gene organization closely follows that of the human orthologue with 12 exons and 11 introns. The hnRNP A2/B1/B0 gene gives rise to four splice variants through alternative splicing of exons 2 and 9. RT-PCR assays indicated that all splice variants were expressed in mouse brain, skin, and stomach tissues of varying ages, although their ratios to one another varied with age and tissue type. We also identified a small subset of all polyadenylated splice variants that included intron 11, which shows 94% sequence identity between human and mouse. Several processed pseudogenes were identified in the mouse genome. A search of the mouse genome databases located five pseudogenes, four of. which are presumed to be non-functional because of the presence of premature stop codons, large deletions or rearrangements within the coding region. The fifth, which possesses putative promoter elements and has a coding sequence identical to that of the hnRNP A2 mRNA, variant, may be functional. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Background and Aims: Zomepirac (ZP), a non-steroidal anti-inflammatory drug (NSAID), has been reported to cause immune-mediated liver injury. In vivo, ZP is metabolized to a chemically reactive acyl glucuronide conjugate (ZAG) which can undergo covalent adduct formation with proteins. Such acyl glucuronide-derived drug-protein adducts may be important in the development of immune and toxic responses caused by NSAID. We have shown using immunoabsorptions that the 110 kDa CD26 (dipeptidyl peptidase IV) is one of the hepatic target proteins for covalent modification by ZAG. In the present study, a CD26-deficient mouse strain was used to examine protein targets for covalent modification by ZP/metabolites in the liver. Methods and Results: The CD26-deficient phenotype was confirmed by immunohistochemistry, flow cytometry analysis, RT-PCR, enzyme assay and immunoblotting. Moreover, by using monoclonal antibody immunoblots, CD26 was not detected in the livers of ZP-treated CD26-deficient mice. Immunoblots using a polyclonal antiserum to ZP on liver from ZP-treated mice showed three major sizes of protein bands, in the 70, 110 and 140 kDa regions. Most, but not all, of the anti-ZP immunoreactivity in the 110 kDa region was absent from ZP-treated CD26-deficient mice. Conclusion: These data definitively showed that CD26 was a component of ZP-modified proteins in vivo. In addition, the data suggested that at least one other protein of approximately 110 kDa was modified by covalent adduct formation with ZAG. (C) 2002 Blackwell Science Asia Pty Ltd.
Resumo:
The spatiotemporal expression patterns of the chemorepulsive EphA receptors, EphA4 and EphA7, and three ephrins-A2, A4 and A5, were examined in the developing rat primary olfactory system. Unlike the visual system that has simple and stable gradients of Ephs and ephrins, the olfactory system demonstrates complex spatiotemporal expression patterns of these molecules. Using immunohistochemistry, we demonstrate that expression of these molecules is dynamic and tightly regulated both within and between different cell types. We reveal restricted targeting of these proteins within subcellular compartments of some neurons. EphA4, ephrin-A2 and ephrin-A5 were expressed by primary olfactory axons during the embryonic formation of the olfactory nerve. There were no gradients in expression along the rostrocaudal or ventrodorsal axes in the nasal cavity and olfactory bulb. However, during the early neonatal period, axons expressing different levels of ephrin-A5 sorted out and terminated in a subpopulation of glomeruli that were mosaically dispersed throughout the bulb. The expression of EphA4 and ephrin-A2 was dramatically down-regulated on all axons during the early neonatal period of glomerular formation. The uniform co-expression of receptors and ligands before glomerular formation suggests they play a generic role in axon-axon interactions in the olfactory nerve and nerve fibre layer. In contrast, loss of EphA4 from axons during glomerular formation may facilitate the interaction of ephrin-A5 with Eph receptors on target cells in the bulb. While EphA4, EphA5 and EphA7 are not mosaically expressed by bulbar neurons, other Eph receptors may have expression patterns complementary to the ephrin-A5-positive subpopulation of glomeruli. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Fetal alcohol syndrome (FAS) is the leading cause of mental retardation in western society. We investigated possible changes in glutamate receptor levels in neonatal animals following ethanol exposure using radioligand binding and western blot analysis. We used a vapor chamber to administer ethanol to neonatal Wistar rats 3 h a day from postnatal day (PND) 4-9. A separation control group was separated from their mothers for the same time and duration as the vapor treatment, while a normal control group was left to develop normally. Daily ethanol administrations resulted in decreased brain weight and body weight, as well as microencephaly (decreased brain:body weight ratio). Neither the affinity nor maximum binding of [H-3]MK-801 (dizoclipine maleate) in the cortex of PND10 rats differed between treatment groups. Western blot analysis also failed to reveal any changes in NMDAR1, NMDAR2A, or NMDAR2B receptor levels. In contrast, the AMPA receptor subunit GluR1 was greatly reduced in vapor-treated pups compared with control pups, as revealed by western blot analysis. A similar reduction was found in westerns with an antibody recognizing the GluR2 and 4 subunits. These results indicate that ethanol reduces AMPA rather than NMDA receptors in the developing neocortex, possibly by blocking NMDA receptors during development. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Cylindrospermopsin (CYN) is a hepatotoxin isolated from the blue-green alga Cylindrospermopsis raciborskii. The role of both glutathione (GSH) and the cytochrome P450 enzyme system (P450) in the mechanism of toxicity of CYN has been previously investigated in in vitro systems. We have investigated the role of GSH and P450 in vivo in mice. Mice pre-treated with buthionine sulphoximine and diethyl maleate to deplete hepatic GSH prior to dosing with 0.2 mg/kg CYN showed a seven-day survival rate of 5/13 while the control group rate was 9/14. Dosing mice with 0.2 mg/kg CYN produced a small decrease in hepatic GSH with a characteristic rebound effect at 24 h, The magnitude of this effect is however small and combined with the non-significant difference in survival rates after GSH depletion suggest depletion of GSH by CYN could not be a primary mechanism for CYN toxicity, Conversely, pro-treatment with piperonyl butoxide, a P450 inhibitor, protected mice against CYN toxicity giving a survival rate of 10/10 compared with 4/10 in the control group (p < 0.05 Chi squared) and was protective at doses up to 0.8 mg/kg, suggesting activation of CYN by P450 is of primary importance in the mechanism of action. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Following treatment with bracken fern (Pteridium aquilinum) extract and bracken spores a number of DNA adducts were detected by P-32-postlabeling. Three of these adducts have been described previously (Povey et al., Br. J. Cancer (1996) 74, 1342-1348) and in this study, using a slightly different protocol, four new adducts, with higher chromatographic mobility, were detected at levels ranging from 50 to 230% of those previously described, When DNA was treated in vitro with activated ptaquiloside (APT) and analysed by butanol extraction or nuclease P1 treatment, only one adduct was detected by P-32-postlabeling, This adduct was not present in the DNA from mice treated with bracken fern or spores, suggesting either that bracken contains genotoxins other than ptaquiloside or that the metabolism of ptaquiloside produces genotoxins not reflected by activated ptaquiloside. However, as the ATP-derived adduct has been detected previously in ileal DNA of bracken-fed calves, species-specific differences in the metabolism of bracken genotoxins may exist, thereby leading to differences in their biological outcomes. (C) 2001 Academic Press.
Resumo:
We report a 12-month-old infant who presented with a 4-month history of isosexual precocious puberty secondary to an estrogenizing Sertoli-Leydig cell tumor of the ovary. Total serum immunoreactive inhibin and subunits A and B were markedly elevated before surgical resection and subsequently decreased 7 wk later into the normal prepubertal range. Twenty weeks following surgical removal, the patient presented again with central precocious puberty; inhibin B levels were raised on this occasion, a luteinizing releasing hormone stimulation test confirmed central precocious puberty. This is the youngest reported occurrence of this rare sex cord stromal neoplasm. The prognosis of this extremely rare tumor presenting at this early juvenile stage is uncertain. This report illustrates the usefulness of serum inhibin as a tumor marker during therapeutic suppression with leuprorelin acetate for central precocious puberty. Analysis of genomic and tumor DNA revealed a normal nucleotide sequence for the LH receptor and the G{alpha}s gene. To understand the molecular pathogenesis of this tumor we analyzed mRNA levels for the inhibin A and B subunits, FSH receptor, LH receptor aromatase, steroidogenic factor-1 and the ER ß genes. Molecular characterization reveals the presence of genes specific for granulosa and Leydig cells; the relative expression of these genes, in addition to its histologic characteristics, suggests that this tumor may result from a dysdifferentiation of a primordial follicle.