965 resultados para NEAR-INFRARED OBSERVATIONS
Resumo:
The potential of a fibre optic sensor, detecting light backscatter in a cheese vat during coagulation and syneresis, to predict curd moisture, fat loses and curd yield was examined. Temperature, cutting time and calcium levels were varied to assess the strength of the predictions over a range of processing conditions. Equations were developed using a combination of independent variables, milk compositional and light backscatter parameters. Fat losses, curd yield and curd moisture content were predicted with a standard error of prediction (SEP) of +/- 2.65 g 100 g(-1) (R-2 = 0.93), +/- 0.95% (R-2 = 0.90) and +/- 1.43% (R-2 = 0.94), respectively. These results were used to develop a model for predicting curd moisture as a function of time during syneresis (SEP = +/- 1.72%; R-2 = 0.95). By monitoring coagulation and syneresis, this sensor technology could be employed to control curd moisture content, thereby improving process control during cheese manufacture. (c) 2007 Elsevier Ltd. All rights reserved..
Resumo:
For a long time, it has been believed that atmospheric absorption of radiation within wavelength regions of relatively high infrared transmittance (so-called ‘windows’) was dominated by the water vapour self-continuum, that is, spectrally smooth absorption caused by H2O−H2O pair interaction. Absorption due to the foreign continuum (i.e. caused mostly by H2O−N2 bimolecular absorption in the Earth's atmosphere) was considered to be negligible in the windows. We report new retrievals of the water vapour foreign continuum from high-resolution laboratory measurements at temperatures between 350 and 430 K in four near-infrared windows between 1.1 and 5 μm (9000–2000 cm−1). Our results indicate that the foreign continuum in these windows has a very weak temperature dependence and is typically between one and two orders of magnitude stronger than that given in representations of the continuum currently used in many climate and weather prediction models. This indicates that absorption owing to the foreign continuum may be comparable to the self-continuum under atmospheric conditions in the investigated windows. The calculated global-average clear-sky atmospheric absorption of solar radiation is increased by approximately 0.46 W m−2 (or 0.6% of the total clear-sky absorption) by using these new measurements when compared with calculations applying the widely used MTCKD (Mlawer–Tobin–Clough–Kneizys–Davies) foreign-continuum model.
Resumo:
The gaseous absorption of solar radiation within near-infrared atmospheric windows in the Earth's atmosphere is dominated by the water vapour continuum. Recent measurements by Baranov et al. (2011) [17] in 2500 cm−1 (4 μm) window and by Ptashnik et al. (2011) [18] in a few near-infrared windows revealed that the self-continuum absorption is typically an order of magnitude stronger than given by the MT_CKD continuum model prior to version 2.5. Most of these measurements, however, were made at elevated temperatures, which makes their application to atmospheric conditions difficult. Here we report new laboratory measurements of the self-continuum absorption at 289 and 318 K in the near-infrared spectral region 1300–8000 cm−1, using a multipass 30 m base cell with total optical path 612 m. Our results confirm the main conclusions of the previous measurements both within bands and in windows. Of particular note is that we present what we believe to be the first near-room temperature measurement using Fourier Transform Spectrometry of the self-continuum in the 6200 cm−1 (1.6 μm) window, which provides tentative evidence that, at such temperatures, the water vapour continuum absorption may be as strong as it is in 2.1 μm and 4 μm windows and up to 2 orders of magnitude stronger than the MT_CKD-2.5 continuum. We note that alternative methods of measuring the continuum in this window have yielded widely differing assessment of its strength, which emphasises the need for further measurements.
Resumo:
Infrared observations of the outbursting black hole XTE J1118+480 (ATEL #383) were performed using SQIID on the Kitt Peak National Observatory 2.1m telescope. Observations spanning 2005 January 15.42-15.58 found it somewhat fainter than the previous outburst (IAUC # 7394 , # 7407 ), at average brightness J=12.91+/-0.03, H=12.50+/-0.03, K=11.95+/-0.03. The colors again correspond to an approximately flat spectrum in F_nu. No orbital variation is apparent, but there is substantial unresolved rapid variability with rms amplitude 22% in K (between 2s exposures). Further observations are planned nightly until Jan 21.
Resumo:
The extraterrestrial solar spectrum (ESS) is an important component in near infrared (near-IR) radiative transfer calculations. However, the impact of a particular choice of the ESS in these regions has been given very little attention. A line-by-line (LBL) transfer model has been used to calculate the absorbed solar irradiance and solar heating rates in the near-IR from 2000-10000 cm−1(1-5 μm) using different ESS. For overhead sun conditions in a mid-latitude summer atmosphere, the absorbed irradiances could differ by up to about 11 Wm−2 (8.2%) while the tropospheric and stratospheric heating rates could differ by up to about 0.13 K day−1 (8.1%) and 0.19 K day−1 (7.6%). The spectral shape of the ESS also has a small but non-negligible impact on these factors in the near-IR.
Resumo:
Recent laboratory measurements show that absorption by the water vapour continuum in near-infrared windows may be about an order of magnitude higher than assumed in many radiation codes. The radiative impact of the continuum at visible and near-infrared wavelengths is examined for the present day and for a possible future warmer climate (with a global-mean total column water increase of 33%). The calculations use a continuum model frequently used in climate models (‘CKD’) and a continuum model where absorption is enhanced at wavelengths greater than 1 µm based on recent measurements (‘CAVIAR’). The continuum predominantly changes the partitioning between solar radiation absorbed by the surface and the atmosphere; changes in top-of-atmosphere net irradiances are smaller. The global-mean clear-sky atmospheric absorption is enhanced by 1.5 W m−2 (about 2%) and 2.8 W m−2 (about 3.5%) for CKD and CAVIAR respectively, relative to a hypothetical no-continuum case, with all-sky enhancements about 80% of these values. The continuum is, in relative terms, more important for radiation budget changes between the present day and a possible future climate. Relative to the no-continuum case, the increase in global-mean clear-sky absorption is 8% higher using CKD and almost 20% higher using CAVIAR; all-sky enhancements are about half these values. The effect of the continuum is estimated for the solar component of the water vapour feedback, the reduction in downward surface irradiance and precipitation change in a warmer world. For CKD and CAVIAR respectively, and relative to the no-continuum case, the solar component of the water vapour feedback is enhanced by about 4 and 9%, the change in clear-sky downward surface irradiance is 7 and 18% more negative, and the global-mean precipitation response decreases by 1 and 4%. There is a continued need for improved continuum measurements, especially at atmospheric temperatures and at wavelengths below 2 µm.
Resumo:
Objective. Functional near-infrared spectroscopy (fNIRS) is an emerging technique for the in vivo assessment of functional activity of the cerebral cortex as well as in the field of brain–computer interface (BCI) research. A common challenge for the utilization of fNIRS in these areas is a stable and reliable investigation of the spatio-temporal hemodynamic patterns. However, the recorded patterns may be influenced and superimposed by signals generated from physiological processes, resulting in an inaccurate estimation of the cortical activity. Up to now only a few studies have investigated these influences, and still less has been attempted to remove/reduce these influences. The present study aims to gain insights into the reduction of physiological rhythms in hemodynamic signals (oxygenated hemoglobin (oxy-Hb), deoxygenated hemoglobin (deoxy-Hb)). Approach. We introduce the use of three different signal processing approaches (spatial filtering, a common average reference (CAR) method; independent component analysis (ICA); and transfer function (TF) models) to reduce the influence of respiratory and blood pressure (BP) rhythms on the hemodynamic responses. Main results. All approaches produce large reductions in BP and respiration influences on the oxy-Hb signals and, therefore, improve the contrast-to-noise ratio (CNR). In contrast, for deoxy-Hb signals CAR and ICA did not improve the CNR. However, for the TF approach, a CNR-improvement in deoxy-Hb can also be found. Significance. The present study investigates the application of different signal processing approaches to reduce the influences of physiological rhythms on the hemodynamic responses. In addition to the identification of the best signal processing method, we also show the importance of noise reduction in fNIRS data.
Resumo:
Spectroscopic catalogues, such as GEISA and HITRAN, do not yet include information on the water vapour continuum that pervades visible, infrared and microwave spectral regions. This is partly because, in some spectral regions, there are rather few laboratory measurements in conditions close to those in the Earth’s atmosphere; hence understanding of the characteristics of the continuum absorption is still emerging. This is particularly so in the near-infrared and visible, where there has been renewed interest and activity in recent years. In this paper we present a critical review focusing on recent laboratory measurements in two near-infrared window regions (centred on 4700 and 6300 cm−1) and include reference to the window centred on 2600 cm−1 where more measurements have been reported. The rather few available measurements, have used Fourier transform spectroscopy (FTS), cavity ring down spectroscopy, optical-feedback – cavity enhanced laser spectroscopy and, in very narrow regions, calorimetric interferometry. These systems have different advantages and disadvantages. Fourier Transform Spectroscopy can measure the continuum across both these and neighbouring windows; by contrast, the cavity laser techniques are limited to fewer wavenumbers, but have a much higher inherent sensitivity. The available results present a diverse view of the characteristics of continuum absorption, with differences in continuum strength exceeding a factor of 10 in the cores of these windows. In individual windows, the temperature dependence of the water vapour self-continuum differs significantly in the few sets of measurements that allow an analysis. The available data also indicate that the temperature dependence differs significantly between different near-infrared windows. These pioneering measurements provide an impetus for further measurements. Improvements and/or extensions in existing techniques would aid progress to a full characterisation of the continuum – as an example, we report pilot measurements of the water vapour self-continuum using a supercontinuum laser source coupled to an FTS. Such improvements, as well as additional measurements and analyses in other laboratories, would enable the inclusion of the water vapour continuum in future spectroscopic databases, and therefore allow for a more reliable forward modelling of the radiative properties of the atmosphere. It would also allow a more confident assessment of different theoretical descriptions of the underlying cause or causes of continuum absorption.
Resumo:
We studied, for the first time, the near-infrared, stellar and baryonic Tully-Fisher relations for a sample of field galaxies taken from a homogeneous Fabry-Perot sample of galaxies [the Gassendi HAlpha survey of SPirals (GHASP) survey]. The main advantage of GHASP over other samples is that the maximum rotational velocities were estimated from 2D velocity fields, avoiding assumptions about the inclination and position angle of the galaxies. By combining these data with 2MASS photometry, optical colours, HI masses and different mass-to-light ratio estimators, we found a slope of 4.48 +/- 0.38 and 3.64 +/- 0.28 for the stellar and baryonic Tully-Fisher relation, respectively. We found that these values do not change significantly when different mass-to-light ratio recipes were used. We also point out, for the first time, that the rising rotation curves as well as asymmetric rotation curves show a larger dispersion in the Tully-Fisher relation than the flat ones or the symmetric ones. Using the baryonic mass and the optical radius of galaxies, we found that the surface baryonic mass density is almost constant for all the galaxies of this sample. In this study we also emphasize the presence of a break in the NIR Tully-Fisher relation at M(H,K) similar to -20 and we confirm that late-type galaxies present higher total-to-baryonic mass ratios than early-type spirals, suggesting that supernova feedback is actually an important issue in late-type spirals. Due to the well-defined sample selection criteria and the homogeneity of the data analysis, the Tully-Fisher relation for GHASP galaxies can be used as a reference for the study of this relation in other environments and at higher redshifts.
Resumo:
This work presents the first integral field spectroscopy of the Homunculus nebula around eta Carinae in the near-infrared spectral region (J band). We confirmed the presence of a hole on the polar region of each lobe, as indicated by previous near-IR long-slit spectra and mid-IR images. The holes can be described as a cylinder of height (i.e. the thickness of the lobe) and diameter of 6.5 and 6.0 x 10(16) cm, respectively. We also mapped the blue-shifted component of He I lambda 10830 seen towards the NW lobe. Contrary to previous works, we suggested that this blue-shifted component is not related to the Paddle but it is indeed in the equatorial disc. We confirmed the claim of N. Smith and showed that the spatial extent of the Little Homunculus matches remarkably well the radio continuum emission at 3 cm, indicating that the Little Homunculus can be regarded as a small H II region. Therefore, we used the optically thin 1.3 mm radio flux to derive a lower limit for the number of Lyman-continuum photons of the central source in eta Car. In the context of a binary system, and assuming that the ionizing flux comes entirely from the hot companion star, the lower limit for its spectral type and luminosity class ranges from O5.5 III to O7 I. Moreover, we showed that the radio peak at 1.7 arcsec NW from the central star is in the same line-of-sight of the `Sr-filament` but they are obviously spatially separated, while the blue-shifted component of He I lambda 10830 may be related to the radio peak and can be explained by the ultraviolet radiation from the companion star.
Resumo:
We report the first simultaneous zJHK spectroscopy on the archetypical Seyfert 2 galaxy NGC 1068 covering the wavelength region 0.9-2.4 mu m. The slit, aligned in the north-south direction and centred in the optical nucleus, maps a region 300 pc in radius at subarcsec resolution, with a spectral resolving power of 360 km s-1. This configuration allows us to study the physical properties of the nuclear gas including that of the north side of the ionization cone, map the strong excess of continuum emission in the K band and attributed to dust and study the variations, both in flux and profile, in the emission lines. Our results show the following. (1) Mid- to low-ionization emission lines are split into two components, whose relative strengths vary with the position along the slit and seem to be correlated with the jet. (2) The coronal lines are single-peaked and are detected only in the central few hundred of pc from the nucleus. (3) The absorption lines indicate the presence of intermediate age stellar population, which might be a significant contributor to the continuum in the near-IR spectra. (4) Through some simple photoionization models we find photoionization as the main mechanism powering the emitting gas. (5) Calculations using stellar features point to a mass concentration inside the 100-200 pc of about 1010 M(circle dot).
Resumo:
We performed stellar population synthesis on the nuclear and extended regions of NGC 1068 by means of near-infrared spectroscopy to disentangle their spectral energy distribution components. This is the first time that such a technique is applied to the whole 0.8-2.4 mu m wavelength interval in this galaxy. NGC 1068 is one of the nearest and probably the most studied Seyfert 2 galaxy, becoming an excellent laboratory to study the interaction between black holes, the jets that they can produce and the medium in which they propagate. Our main result is that traces of young stellar population are found at similar to 100 pc south of the nucleus. The contribution of a power-law continuum in the centre is about 25 per cent, which is expected if the light is scattered from a Seyfert 1 nucleus. We find peaks in the contribution of the featureless continuum about 100-150 pc from the nucleus on both sides. They might be associated with regions where the jet encounters dense clouds. Further support to this scenario is given by the peaks of hot dust distribution found around these same regions and the H(2) emission-line profile, leading us to propose that the peaks might be associated to regions where stars are being formed. Hot dust also has an important contribution to the nuclear region, reinforcing the idea of the presence of a dense, circumnuclear torus in this galaxy. Cold dust appears mostly in the south direction, which supports the view that the south-west emission is behind the plane of the galaxy and is extinguished very likely by dust in the plane. Intermediate-age stellar population contributes significantly to the continuum, especially in the inner 200 pc.
Resumo:
We describe a new spectroscopic technique for measuring radial metallicity gradients out to large galactocentric radii. We use the DEep Imaging Multi-Object Spectrograph (DEIMOS) on the Keck telescope and the galaxy spectrum extraction technique of Proctor et al. We also make use of the metallicity sensitive near-infrared Calcium ii triplet (CaT) features together with single stellar population models to obtain metallicities. Our technique is applied as a pilot study to a sample of three relatively nearby (< 30 Mpc) intermediate-mass to massive early-type galaxies. Results are compared with previous literature inner region values and generally show good agreement. We also include a comparison with profiles from dissipational disc-disc major merger simulations. Based on our new extended metallicity gradients combined with other observational evidence and theoretical predictions, we discuss possible formation scenarios for the galaxies in our sample. The limitations of our new technique are also discussed.