968 resultados para Mutations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé L'étude de l'adaptation d'une entreprise aux mutations socio-économiques affectant son environnement sociétal donc de sa régulation, requiert de prime abord de comprendre et de caractériser ces mutations. I1 importe ensuite de déterminer les actions et stratégies déployées par cette entreprise en réponse aux pressions environnementales, ainsi que leurs éventuelles retombées sur les caractéristiques de l'environnement qui ont suscité ces réponses. Pour prendre part à cette réflexion, nous nous concentrons sur les conditions d'adaptation de la société d'État Togolaise :Togo Télécom, et nous tentons de confronter la réalité de cette évolution aux différents modèles de l'adaptation élaborés par la théorie des organisations. Une analyse concrète des enjeux soulevés par l'environnement de Togo Télécom et de leurs implications pour la société et pour la Nation a été réalisée au sein de l'organisation. Elle a pris appui sur les documents écrits pertinents à la recherche et sur le recueil des avis et perceptions des acteurs politiques, économiques, syndicaux et institutionnels concernés par l'avenir de l'entreprise. Les résultats indiquent que la société a su globalement entreprendre une réforme interne bénéfique qui lui a permis de faire face aux nouvelles réalités de son environnement malgré le boulet de la dette, tout en s'assurant l'attachement et le support de ses parties prenantes. Cette réforme a pu être mise en place notamment grâce à la remarquable capacité d'adaptation de ces parties prenantes et elle a également été à l'origine de la création d'un "réseau "redéfinissant l'organisation du travail sur le marché ainsi que les rôles, les problèmes et les caractéristiques de l'environnement sociétal. Afin de replacer cette relation particulière dans la théorie des organisations, la présente recherche s'applique à montrer comment le modèle de l'entreprise dominée par son environnement permet d'enrichir notre compréhension des solutions déployées par l'entreprise pour s'adapter; il est ici question d'analyser les comportements et réponses de la société à la lumière des principaux modèles théoriques, afin d'une part de déterminer comment chacun se prête à l'analyse d'un cas pratique et d'autre part de faire ressortir les forces et faiblesses de chaque modèle afin de tendre vers un modèle plus intégratif des réalités de notre cas. Dans cet ordre d'idée, notre recherche à l'instar de Morin (i98z) et de Giddens (1987), nous indique entre autres qu'il est primordial de ne pas isoler la théorie des organisations, dans des visions trop unilatérales, avec des points de vue partiels, mais d'adhérer à la réalité linéaire de la récursivité de l'adaptation des sociétés d'État industrielles et commerciales Africaines car ces organisations possèdent des propriétés spécifiques qui dépassent l'univers des ressources, des compétences ou des jeux d'acteurs qui les composent (Morin (198?)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used exome sequencing of blood DNA in four unrelated patients to identify the genetic basis of metaphyseal chondromatosis with urinary excretion of D-2-hydroxy-glutaric acid (MC-HGA), a rare entity comprising severe chondrodysplasia, organic aciduria, and variable cerebral involvement. No evidence for recessive mutations was found; instead, two patients showed mutations in IDH1 predicting p.R132H and p.R132S as apparent somatic mosaicism. Sanger sequencing confirmed the presence of the mutation in blood DNA in one patient, and in blood and saliva (but not in fibroblast) DNA in the other patient. Mutations at codon 132 of IDH1 change the enzymatic specificity of the cytoplasmic isocitrate dehydrogenase enzyme. They result in increased D-2-hydroxy-glutarate production, α-ketoglutarate depletion, activation of HIF-1α (a key regulator of chondrocyte proliferation at the growth plate), and reduction of N-acetyl-aspartyl-glutamate level in glial cells. Thus, somatic mutations in IDH1 may explain all features of MC-HGA, including sporadic occurrence, metaphyseal disorganization, and chondromatosis, urinary excretion of D-2-hydroxy-glutaric acid, and reduced cerebral myelinization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in PLA2G6 gene have variable phenotypic outcome including infantile neuroaxonal dystrophy, atypical neuroaxonal dystrophy, idiopathic neurodegeneration with brain iron accumulation and Karak syndrome. The cause of this phenotypic variation is so far unknown which impairs both genetic diagnosis and appropriate family counseling. We report detailed clinical, electrophysiological, neuroimaging, histologic, biochemical and genetic characterization of 11 patients, from 6 consanguineous families, who were followed for a period of up to 17 years. Cerebellar atrophy was constant and the earliest feature of the disease preceding brain iron accumulation, leading to the provisional diagnosis of a recessive progressive ataxia in these patients. Ultrastructural characterization of patients' muscle biopsies revealed focal accumulation of granular and membranous material possibly resulting from defective membrane homeostasis caused by disrupted PLA2G6 function. Enzyme studies in one of these muscle biopsies provided evidence for a relatively low mitochondrial content, which is compatible with the structural mitochondrial alterations seen by electron microscopy. Genetic characterization of 11 patients led to the identification of six underlying PLA2G6 gene mutations, five of which are novel. Importantly, by combining clinical and genetic data we have observed that while the phenotype of neurodegeneration associated with PLA2G6 mutations is variable in this cohort of patients belonging to the same ethnic background, it is partially influenced by the genotype, considering the age at onset and the functional disability criteria. Molecular testing for PLA2G6 mutations is, therefore, indicated in childhood-onset ataxia syndromes, if neuroimaging shows cerebellar atrophy with or without evidence of iron accumulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A widely dispersed network of hypothalamic GnRH neurons controls the reproductive axis in mammals. Genetic investigation of the human disease model of isolated GnRH deficiency has revealed several key genes crucial for GnRH neuronal ontogeny and GnRH secretion. Among these genes, prokineticin 2 (PROK2), and PROK2 receptor (PROKR2) have recently emerged as critical regulators of reproduction in both mice and humans. Both prok2- and prokr2-deficient mice recapitulate the human Kallmann syndrome phenotype. Additionally, PROK2 and PROKR2 mutations are seen in humans with Kallmann syndrome, thus implicating this pathway in GnRH neuronal migration. However, PROK2/PROKR2 mutations are also seen in normosmic GnRH deficiency, suggesting a role for the prokineticin signaling system in GnRH biology that is beyond neuronal migration. This observation is particularly surprising because mature GnRH neurons do not express PROKR2. Moreover, mutations in both PROK2 and PROKR2 are predominantly detected in the heterozygous state with incomplete penetrance or variable expressivity frequently seen within and across pedigrees. In some of these pedigrees, a "second hit" or oligogenicity has been documented. Besides reproduction, a pleiotropic physiological role for PROK2 is now recognized, including regulation of pain perception, circadian rhythms, hematopoiesis, and immune response. Therefore, further detailed clinical studies of patients with PROK2/PROKR2 mutations will help to map the broader biological role of the PROK2/PROKR2 pathway and identify other interacting genes/proteins that mediate its molecular effects in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methods Ten patients with aniridia from 3 families of Egyptian origin underwent full ophthalmologic, general and neurological examination, and blood drawing. Cerebral MRI was performed in the index case of each family. Genomic DNA was prepared from venous leukocytes and direct sequencing of all the exons and intron-exon junctions of the PAX6 gene was performed after PCR amplification. Results Common features observed in the three families included absence of iris tissue, corneal pannus with different degrees of severity and foveal hypoplasia with severely reduced visual acuity. In families 2 and 3, additional findings such as lens dislocation, lens opacities or polar cataract and glaucoma were observed. We identified two novel (c.170-174delTGGGC [p.L57fs17] and c.475delC [p.R159fs47]) and one known (c.718C>T) PAX6 mutations in the affected members of the 3 families. Systemic and neurological examination was normal in all ten affected patients. Cerebral MRI showed absence of the pineal gland in all three index patients. Severe hypoplasia of the brain anterior commissure was associated to the p.L57fs17mutation, absence of the posterior commissure to both p.R159fs47 and p.R240X, and optic chiasma atrophy and almost complete agenesis of the corpus callosum to p.R240X. Conclusions We identified two novel PAX6 mutations in families with severe aniridia from Northern Egypt, an ethnic group which is not well studied. In addition to common phenotype of aniridia and despite normal neurological examination, absence of the pineal gland was observed in all 3 index patients. The heterogeneity of brain anomalies related to PAX6 mutations is underexplored and is highlighted in this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marie Unna hereditary hypotrichosis (MUHH) is an autosomal dominant form of genetic hair loss. In a large Chinese family carrying MUHH, we identified a pathogenic initiation codon mutation in U2HR, an inhibitory upstream ORF in the 5' UTR of the gene encoding the human hairless homolog (HR). U2HR is predicted to encode a 34-amino acid peptide that is highly conserved among mammals. In 18 more families from different ancestral groups, we identified a range of defects in U2HR, including loss of initiation, delayed termination codon and nonsense and missense mutations. Functional analysis showed that these classes of mutations all resulted in increased translation of the main HR physiological ORF. Our results establish the link between MUHH and U2HR, show that fine-tuning of HR protein levels is important in control of hair growth, and identify a potential mechanism for preventing hair loss or promoting hair removal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Congenital stationary night blindness (CSNB) is a heterogeneous retinal disorder characterized by visual impairment under low light conditions. This disorder is due to a signal transmission defect from rod photoreceptors to adjacent bipolar cells in the retina. Two forms can be distinguished clinically, complete CSNB (cCSNB) or incomplete CSNB; the two forms are distinguished on the basis of the affected signaling pathway. Mutations in NYX, GRM6, and TRPM1, expressed in the outer plexiform layer (OPL) lead to disruption of the ON-bipolar cell response and have been seen in patients with cCSNB. Whole-exome sequencing in cCSNB patients lacking mutations in the known genes led to the identification of a homozygous missense mutation (c.1807C>T [p.His603Tyr]) in one consanguineous autosomal-recessive cCSNB family and a homozygous frameshift mutation in GPR179 (c.278delC [p.Pro93Glnfs(∗)57]) in a simplex male cCSNB patient. Additional screening with Sanger sequencing of 40 patients identified three other cCSNB patients harboring additional allelic mutations in GPR179. Although, immunhistological studies revealed Gpr179 in the OPL in wild-type mouse retina, Gpr179 did not colocalize with specific ON-bipolar markers. Interestingly, Gpr179 was highly concentrated in horizontal cells and Müller cell endfeet. The involvement of these cells in cCSNB and the specific function of GPR179 remain to be elucidated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: We hypothesized that polymorphic mutations exist that are associated with the emergence of the multinucleoside resistance mutations (MNR), 69 insertion and Q151M. METHODS: The Swiss HIV Cohort Study was screened, and the frequencies of polymorphic mutations in HIV-1 (subtype B) were compared between patients detected with the 69 insertion (n = 17), Q151M (n = 29), ≥2 thymidine analogue mutations (TAM) 1 (n = 400) or ≥2 TAM 2 (n = 249). Logistic regressions adjusted for the antiretroviral treatment history were performed to analyze the association of the polymorphic mutations with MNR. RESULTS: The 69 insertion and TAM 1 were strongly associated and occurred in 94.1% (16 of 17) together. The 69 insertion seemed to emerge as a consequence of the TAM 1 pathway (median years until detection: 6.8 compared with 4.4 for ≥2 TAM 1, P Wilcoxon = 0.009). Frequencies of 8 polymorphic mutations (K43E, V60I, S68G, S162C, T165I, I202V, R211K, F214L) were significantly different between groups. Logistic regression showed that F214L and V60I were associated with the emergence of Q151M/TAM 2 opposed to 69 insertion/TAM 1. S68G, T165I, and I202V were associated with Q151M instead of TAM 2. CONCLUSIONS: Besides antiretroviral therapy, polymorphic mutations may contribute to the emergence of specific MNR mutations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anaplastic lymphoma kinase (ALK) gene is overexpressed, mutated or amplified in most neuroblastoma (NB), a pediatric neural crest-derived embryonal tumor. The two most frequent mutations, ALK-F1174L and ALK-R1275Q, contribute to NB tumorigenesis in mouse models, and cooperate with MYCN in the oncogenic process. However, the precise role of activating ALK mutations or ALK-wt overexpression in NB tumor initiation needs further clarification. Human ALK-wt, ALK-F1174L, or ALK-R1275Q were stably expressed in murine neural crest progenitor cells (NCPC), MONC-1 or JoMa1, immortalized with v-Myc or Tamoxifen-inducible Myc-ERT, respectively. While orthotopic implantations of MONC- 1 parental cells in nude mice generated various tumor types, such as NB, osteo/ chondrosarcoma, and undifferentiated tumors, due to v-Myc oncogenic activity, MONC-1-ALK-F1174L cells only produced undifferentiated tumors. Furthermore, our data represent the first demonstration of ALK-wt transforming capacity, as ALK-wt expression in JoMa1 cells, likewise ALK-F1174L, or ALK-R1275Q, in absence of exogenous Myc-ERT activity, was sufficient to induce the formation of aggressive and undifferentiated neural crest cell-derived tumors, but not to drive NB development. Interestingly, JoMa1-ALK tumors and their derived cell lines upregulated Myc endogenous expression, resulting from ALK activation, and both ALK and Myc activities were necessary to confer tumorigenic properties on tumor-derived JoMa1 cells in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coats plus is a highly pleiotropic disorder particularly affecting the eye, brain, bone and gastrointestinal tract. Here, we show that Coats plus results from mutations in CTC1, encoding conserved telomere maintenance component 1, a member of the mammalian homolog of the yeast heterotrimeric CST telomeric capping complex. Consistent with the observation of shortened telomeres in an Arabidopsis CTC1 mutant and the phenotypic overlap of Coats plus with the telomeric maintenance disorders comprising dyskeratosis congenita, we observed shortened telomeres in three individuals with Coats plus and an increase in spontaneous γH2AX-positive cells in cell lines derived from two affected individuals. CTC1 is also a subunit of the α-accessory factor (AAF) complex, stimulating the activity of DNA polymerase-α primase, the only enzyme known to initiate DNA replication in eukaryotic cells. Thus, CTC1 may have a function in DNA metabolism that is necessary for but not specific to telomeric integrity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Genetic predisposition to life-threatening cardiac arrhythmias such as congenital long-QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT) represent treatable causes of sudden cardiac death in young adults and children. Recently, mutations in calmodulin (CALM1, CALM2) have been associated with severe forms of LQTS and CPVT, with life-threatening arrhythmias occurring very early in life. Additional mutation-positive cases are needed to discern genotype-phenotype correlations associated with calmodulin mutations. METHODS AND RESULTS: We used conventional and next-generation sequencing approaches, including exome analysis, in genotype-negative LQTS probands. We identified 5 novel de novo missense mutations in CALM2 in 3 subjects with LQTS (p.N98S, p.N98I, p.D134H) and 2 subjects with clinical features of both LQTS and CPVT (p.D132E, p.Q136P). Age of onset of major symptoms (syncope or cardiac arrest) ranged from 1 to 9 years. Three of 5 probands had cardiac arrest and 1 of these subjects did not survive. The clinical severity among subjects in this series was generally less than that originally reported for CALM1 and CALM2 associated with recurrent cardiac arrest during infancy. Four of 5 probands responded to β-blocker therapy, whereas 1 subject with mutation p.Q136P died suddenly during exertion despite this treatment. Mutations affect conserved residues located within Ca(2+)-binding loops III (p.N98S, p.N98I) or IV (p.D132E, p.D134H, p.Q136P) and caused reduced Ca(2+)-binding affinity. CONCLUSIONS: CALM2 mutations can be associated with LQTS and with overlapping features of LQTS and CPVT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The epithelial Na+ channel ENaC mediates transepithelial Na+ transport in the distal kidney, the colon, and the lung and is a key element for the maintenance of Na+ balance and the regulation of blood pressure. Mutagenesis studies have identified residues alphaS583 and the homologous betaG525 and gammaG537 in the outer pore entrance that are critical for ENaC block by the K+-sparing diuretic amiloride. The aim of the present study was to determine first, whether these residues are part of the amiloride binding site, and second, whether they are general determinants of ENaC block by amiloride and its derivatives. Kinetic analysis of the association and dissociation rates of amiloride and benzamil to ENaC showed that mutation of residue alphaS583C and the homologous betaG525C increased the dissociation rate of the drugs from the binding site, with little changes in their association rate. Thus, these mutations destabilize the binding interaction between the blockers and the receptor on the channel, favoring the unbinding of the ligand. This strongly suggests that they are part of the binding site. Because mutations of alphaS583, betaG525, and gammaG537 have similar effects on amiloride, benzamil, and triamterene block, we conclude that these three ENaC blockers share a common receptor within the ion channel pore.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Alterations of mitochondrial DNA (mtDNA) have been found in cancer patients, therefore informative mtDNA mutations could serve as biomarkers for the disease. MATERIALS AND METHODS: The two hypervariable regions HVR1 and HVR2 in the D-Loop region were sequenced in ten paired tissue and plasma samples from breast cancer patients. RESULTS: MtDNA mutations were found in all patients' samples, suggesting a 100% detection rate. Examining germline mtDNA mutations, a total of 85 mutations in the D-loop region were found; 31 of these mutations were detected in both tissues and matched plasma samples, the other 54 germline mtDNA mutations were found only in the plasma samples. Regarding somatic mtDNA mutations, a total of 42 mutations in the D-loop region were found in breast cancer tissues. CONCLUSION: Somatic mtDNA mutations in the D-loop region were detected in breast cancer tissues but not in the matched plasma samples, suggesting that more sensitive methods will be needed for such detection to be of clinical utility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Studies on large animal models are an important step to test new therapeutical strategies before human application. Considering the importance of cone function for human vision and the paucity of large animal models for cone dystrophies having an enriched cone region, we propose to develop a pig model for cone degeneration. With a lentiviral-directed transgenesis, we obtained pigs transgenic for a cone-dominant mutant gene described in a human cone dystrophy.Methods: Lentiviral vectors encoding the human double mutant GUCY2DE837D/R838S cDNA under the control of a region of the pig arrestin-3 promoter (Arr3) was produced and used for lentiviral-derived transgenesis in pigs. PCR-genotyping and southern blotting determined the genotype of pigs born after injection of the vector at the zygote stage. Retina function analysis was performed by ERG and behavioral tests at 11, 24 and 54 weeks of age. OCT and histological analyses were performed to describe the retina morphology.Results: The ratio of transgenic pigs born after lentiviral-directed transgenesis was close to 50%. Transgenic pigs with 3 to 5 transgene copies per cell clearly present a reduced photopic response from 3 months of age on. Except for one pig, which has 6 integrated transgene copies, no dramatic decrease in general mobility was observed even at 6 months of age. OCT examinations reveal no major changes in the ONL structure of the 6-months old pigs. The retina morphology was well conserved in the 2 pigs sacrificed (3 and 6 months old) except a noticeable displacement of some cone nuclei in the outer segment layer.Conclusions: Lentiviral-directed transgenesis is a rapid and straightforward method to engineer transgenic pigs. Some Arr3-GUCY2DE837D/R838S pigs show signs of retinal dysfunction but further work is needed to describe the progression of the disease in this model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Opsismodysplasia (OPS) is a severe autosomal-recessive chondrodysplasia characterized by pre- and postnatal micromelia with extremely short hands and feet. The main radiological features are severe platyspondyly, squared metacarpals, delayed skeletal ossification, and metaphyseal cupping. In order to identify mutations causing OPS, a total of 16 cases (7 terminated pregnancies and 9 postnatal cases) from 10 unrelated families were included in this study. We performed exome sequencing in three cases from three unrelated families and only one gene was found to harbor mutations in all three cases: inositol polyphosphate phosphatase-like 1 (INPPL1). Screening INPPL1 in the remaining cases identified a total of 12 distinct INPPL1 mutations in the 10 families, present at the homozygote state in 7 consanguinous families and at the compound heterozygote state in the 3 remaining families. Most mutations (6/12) resulted in premature stop codons, 2/12 were splice site, and 4/12 were missense mutations located in the catalytic domain, 5-phosphatase. INPPL1 belongs to the inositol-1,4,5-trisphosphate 5-phosphatase family, a family of signal-modulating enzymes that govern a plethora of cellular functions by regulating the levels of specific phosphoinositides. Our finding of INPPL1 mutations in OPS, a severe spondylodysplastic dysplasia with major growth plate disorganization, supports a key and specific role of this enzyme in endochondral ossification.