945 resultados para Multi-objective optimisation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Construction projects are complex endeavors that require the involvement of different professional disciplines in order to meet various project objectives that are often conflicting. The level of complexity and the multi-objective nature of construction projects lend themselves to collaborative design and construction such as integrated project delivery (IPD), in which relevant disciplines work together during project conception, design and construction. Traditionally, the main objectives of construction projects have been to build in the least amount of time with the lowest cost possible, thus the inherent and well-established relationship between cost and time has been the focus of many studies. The importance of being able to effectively model relationships among multiple objectives in building construction has been emphasized in a wide range of research. In general, the trade-off relationship between time and cost is well understood and there is ample research on the subject. However, despite sustainable building designs, relationships between time and environmental impact, as well as cost and environmental impact, have not been fully investigated. The objectives of this research were mainly to analyze and identify relationships of time, cost, and environmental impact, in terms of CO2 emissions, at different levels of a building: material level, component level, and building level, at the pre-use phase, including manufacturing and construction, and the relationships of life cycle cost and life cycle CO2 emissions at the usage phase. Additionally, this research aimed to develop a robust simulation-based multi-objective decision-support tool, called SimulEICon, which took construction data uncertainty into account, and was capable of incorporating life cycle assessment information to the decision-making process. The findings of this research supported the trade-off relationship between time and cost at different building levels. Moreover, the time and CO2 emissions relationship presented trade-off behavior at the pre-use phase. The results of the relationship between cost and CO2 emissions were interestingly proportional at the pre-use phase. The same pattern continually presented after the construction to the usage phase. Understanding the relationships between those objectives is a key in successfully planning and designing environmentally sustainable construction projects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this work is to present a methodology to develop cost-effective thermal management solutions for microelectronic devices, capable of removing maximum amount of heat and delivering maximally uniform temperature distributions. The topological and geometrical characteristics of multiple-story three-dimensional branching networks of microchannels were developed using multi-objective optimization. A conjugate heat transfer analysis software package and an automatic 3D microchannel network generator were developed and coupled with a modified version of a particle-swarm optimization algorithm with a goal of creating a design tool for 3D networks of optimized coolant flow passages. Numerical algorithms in the conjugate heat transfer solution package include a quasi-ID thermo-fluid solver and a steady heat diffusion solver, which were validated against results from high-fidelity Navier-Stokes equations solver and analytical solutions for basic fluid dynamics test cases. Pareto-optimal solutions demonstrate that thermal loads of up to 500 W/cm2 can be managed with 3D microchannel networks, with pumping power requirements up to 50% lower with respect to currently used high-performance cooling technologies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An important problem faced by the oil industry is to distribute multiple oil products through pipelines. Distribution is done in a network composed of refineries (source nodes), storage parks (intermediate nodes), and terminals (demand nodes) interconnected by a set of pipelines transporting oil and derivatives between adjacent areas. Constraints related to storage limits, delivery time, sources availability, sending and receiving limits, among others, must be satisfied. Some researchers deal with this problem under a discrete viewpoint in which the flow in the network is seen as batches sending. Usually, there is no separation device between batches of different products and the losses due to interfaces may be significant. Minimizing delivery time is a typical objective adopted by engineers when scheduling products sending in pipeline networks. However, costs incurred due to losses in interfaces cannot be disregarded. The cost also depends on pumping expenses, which are mostly due to the electricity cost. Since industrial electricity tariff varies over the day, pumping at different time periods have different cost. This work presents an experimental investigation of computational methods designed to deal with the problem of distributing oil derivatives in networks considering three minimization objectives simultaneously: delivery time, losses due to interfaces and electricity cost. The problem is NP-hard and is addressed with hybrid evolutionary algorithms. Hybridizations are mainly focused on Transgenetic Algorithms and classical multi-objective evolutionary algorithm architectures such as MOEA/D, NSGA2 and SPEA2. Three architectures named MOTA/D, NSTA and SPETA are applied to the problem. An experimental study compares the algorithms on thirty test cases. To analyse the results obtained with the algorithms Pareto-compliant quality indicators are used and the significance of the results evaluated with non-parametric statistical tests.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multi-objective problems may have many optimal solutions, which together form the Pareto optimal set. A class of heuristic algorithms for those problems, in this work called optimizers, produces approximations of this optimal set. The approximation set kept by the optmizer may be limited or unlimited. The benefit of using an unlimited archive is to guarantee that all the nondominated solutions generated in the process will be saved. However, due to the large number of solutions that can be generated, to keep an archive and compare frequently new solutions to the stored ones may demand a high computational cost. The alternative is to use a limited archive. The problem that emerges from this situation is the need of discarding nondominated solutions when the archive is full. Some techniques were proposed to handle this problem, but investigations show that none of them can surely prevent the deterioration of the archives. This work investigates a technique to be used together with the previously proposed ideas in the literature to deal with limited archives. The technique consists on keeping discarded solutions in a secondary archive, and periodically recycle these solutions, bringing them back to the optimization. Three methods of recycling are presented. In order to verify if these ideas are capable to improve the archive content during the optimization, they were implemented together with other techniques from the literature. An computational experiment with NSGA-II, SPEA2, PAES, MOEA/D and NSGA-III algorithms, applied to many classes of problems is presented. The potential and the difficulties of the proposed techniques are evaluated based on statistical tests.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multi-objective problems may have many optimal solutions, which together form the Pareto optimal set. A class of heuristic algorithms for those problems, in this work called optimizers, produces approximations of this optimal set. The approximation set kept by the optmizer may be limited or unlimited. The benefit of using an unlimited archive is to guarantee that all the nondominated solutions generated in the process will be saved. However, due to the large number of solutions that can be generated, to keep an archive and compare frequently new solutions to the stored ones may demand a high computational cost. The alternative is to use a limited archive. The problem that emerges from this situation is the need of discarding nondominated solutions when the archive is full. Some techniques were proposed to handle this problem, but investigations show that none of them can surely prevent the deterioration of the archives. This work investigates a technique to be used together with the previously proposed ideas in the literature to deal with limited archives. The technique consists on keeping discarded solutions in a secondary archive, and periodically recycle these solutions, bringing them back to the optimization. Three methods of recycling are presented. In order to verify if these ideas are capable to improve the archive content during the optimization, they were implemented together with other techniques from the literature. An computational experiment with NSGA-II, SPEA2, PAES, MOEA/D and NSGA-III algorithms, applied to many classes of problems is presented. The potential and the difficulties of the proposed techniques are evaluated based on statistical tests.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Quadratic Minimum Spanning Tree (QMST) problem is a generalization of the Minimum Spanning Tree problem in which, beyond linear costs associated to each edge, quadratic costs associated to each pair of edges must be considered. The quadratic costs are due to interaction costs between the edges. When interactions occur between adjacent edges only, the problem is named Adjacent Only Quadratic Minimum Spanning Tree (AQMST). Both QMST and AQMST are NP-hard and model a number of real world applications involving infrastructure networks design. Linear and quadratic costs are summed in the mono-objective versions of the problems. However, real world applications often deal with conflicting objectives. In those cases, considering linear and quadratic costs separately is more appropriate and multi-objective optimization provides a more realistic modelling. Exact and heuristic algorithms are investigated in this work for the Bi-objective Adjacent Only Quadratic Spanning Tree Problem. The following techniques are proposed: backtracking, branch-and-bound, Pareto Local Search, Greedy Randomized Adaptive Search Procedure, Simulated Annealing, NSGA-II, Transgenetic Algorithm, Particle Swarm Optimization and a hybridization of the Transgenetic Algorithm with the MOEA-D technique. Pareto compliant quality indicators are used to compare the algorithms on a set of benchmark instances proposed in literature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Quadratic Minimum Spanning Tree (QMST) problem is a generalization of the Minimum Spanning Tree problem in which, beyond linear costs associated to each edge, quadratic costs associated to each pair of edges must be considered. The quadratic costs are due to interaction costs between the edges. When interactions occur between adjacent edges only, the problem is named Adjacent Only Quadratic Minimum Spanning Tree (AQMST). Both QMST and AQMST are NP-hard and model a number of real world applications involving infrastructure networks design. Linear and quadratic costs are summed in the mono-objective versions of the problems. However, real world applications often deal with conflicting objectives. In those cases, considering linear and quadratic costs separately is more appropriate and multi-objective optimization provides a more realistic modelling. Exact and heuristic algorithms are investigated in this work for the Bi-objective Adjacent Only Quadratic Spanning Tree Problem. The following techniques are proposed: backtracking, branch-and-bound, Pareto Local Search, Greedy Randomized Adaptive Search Procedure, Simulated Annealing, NSGA-II, Transgenetic Algorithm, Particle Swarm Optimization and a hybridization of the Transgenetic Algorithm with the MOEA-D technique. Pareto compliant quality indicators are used to compare the algorithms on a set of benchmark instances proposed in literature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This book constitutes the refereed proceedings of the 14th International Conference on Parallel Problem Solving from Nature, PPSN 2016, held in Edinburgh, UK, in September 2016. The total of 93 revised full papers were carefully reviewed and selected from 224 submissions. The meeting began with four workshops which offered an ideal opportunity to explore specific topics in intelligent transportation Workshop, landscape-aware heuristic search, natural computing in scheduling and timetabling, and advances in multi-modal optimization. PPSN XIV also included sixteen free tutorials to give us all the opportunity to learn about new aspects: gray box optimization in theory; theory of evolutionary computation; graph-based and cartesian genetic programming; theory of parallel evolutionary algorithms; promoting diversity in evolutionary optimization: why and how; evolutionary multi-objective optimization; intelligent systems for smart cities; advances on multi-modal optimization; evolutionary computation in cryptography; evolutionary robotics - a practical guide to experiment with real hardware; evolutionary algorithms and hyper-heuristics; a bridge between optimization over manifolds and evolutionary computation; implementing evolutionary algorithms in the cloud; the attainment function approach to performance evaluation in EMO; runtime analysis of evolutionary algorithms: basic introduction; meta-model assisted (evolutionary) optimization. The papers are organized in topical sections on adaption, self-adaption and parameter tuning; differential evolution and swarm intelligence; dynamic, uncertain and constrained environments; genetic programming; multi-objective, many-objective and multi-level optimization; parallel algorithms and hardware issues; real-word applications and modeling; theory; diversity and landscape analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Design and analysis of conceptually different cooling systems for the human heart preservation are numerically investigated. A heart cooling container with required connections was designed for a normal size human heart. A three-dimensional, high resolution human heart geometric model obtained from CT-angio data was used for simulations. Nine different cooling designs are introduced in this research. The first cooling design (Case 1) used a cooling gelatin only outside of the heart. In the second cooling design (Case 2), the internal parts of the heart were cooled via pumping a cooling liquid inside both the heart’s pulmonary and systemic circulation systems. An unsteady conjugate heat transfer analysis is performed to simulate the temperature field variations within the heart during the cooling process. Case 3 simulated the currently used cooling method in which the coolant is stagnant. Case 4 was a combination of Case 1 and Case 2. A linear thermoelasticity analysis was performed to assess the stresses applied on the heart during the cooling process. In Cases 5 through 9, the coolant solution was used for both internal and external cooling. For external circulation in Case 5 and Case 6, two inlets and two outlets were designed on the walls of the cooling container. Case 5 used laminar flows for coolant circulations inside and outside of the heart. Effects of turbulent flow on cooling of the heart were studied in Case 6. In Case 7, an additional inlet was designed on the cooling container wall to create a jet impinging the hot region of the heart’s wall. Unsteady periodic inlet velocities were applied in Case 8 and Case 9. The average temperature of the heart in Case 5 was +5.0oC after 1500 s of cooling. Multi-objective constrained optimization was performed for Case 5. Inlet velocities for two internal and one external coolant circulations were the three design variables for optimization. Minimizing the average temperature of the heart, wall shear stress and total volumetric flow rates were the three objectives. The only constraint was to keep von Mises stress below the ultimate tensile stress of the heart’s tissue.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a numerical study of a linear compressor cascade to investigate the effective end wall profiling rules for highly-loaded axial compressors. The first step in the research applies a correlation analysis for the different flow field parameters by a data mining over 600 profiling samples to quantify how variations of loss, secondary flow and passage vortex interact with each other under the influence of a profiled end wall. The result identifies the dominant role of corner separation for control of total pressure loss, providing a principle that only in the flow field with serious corner separation does the does the profiled end wall change total pressure loss, secondary flow and passage vortex in the same direction. Then in the second step, a multi-objective optimization of a profiled end wall is performed to reduce loss at design point and near stall point. The development of effective end wall profiling rules is based on the manner of secondary flow control rather than the geometry features of the end wall. Using the optimum end wall cases from the Pareto front, a quantitative tool for analyzing secondary flow control is employed. The driving force induced by a profiled end wall on different regions of end wall flow are subjected to a detailed analysis and identified for their positive/negative influences in relieving corner separation, from which the effective profiling rules are further confirmed. It is found that the profiling rules on a cascade show distinct differences at design point and near stall point, thus loss control of different operating points is generally independent.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There has been an increasing interest in the development of new methods using Pareto optimality to deal with multi-objective criteria (for example, accuracy and time complexity). Once one has developed an approach to a problem of interest, the problem is then how to compare it with the state of art. In machine learning, algorithms are typically evaluated by comparing their performance on different data sets by means of statistical tests. Standard tests used for this purpose are able to consider jointly neither performance measures nor multiple competitors at once. The aim of this paper is to resolve these issues by developing statistical procedures that are able to account for multiple competing measures at the same time and to compare multiple algorithms altogether. In particular, we develop two tests: a frequentist procedure based on the generalized likelihood-ratio test and a Bayesian procedure based on a multinomial-Dirichlet conjugate model. We further extend them by discovering conditional independences among measures to reduce the number of parameters of such models, as usually the number of studied cases is very reduced in such comparisons. Data from a comparison among general purpose classifiers is used to show a practical application of our tests.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-08

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08