917 resultados para Multi-Agent


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main purpose of this paper is to propose a Multi-Agent Autonomic and Bio-Inspired based framework with selfmanaging capabilities to solve complex scheduling problems using cooperative negotiation. Scheduling resolution requires the intervention of highly skilled human problem-solvers. This is a very hard and challenging domain because current systems are becoming more and more complex, distributed, interconnected and subject to rapidly changing. A natural Autonomic Computing (AC) evolution in relation to Current Computing is to provide systems with Self-Managing ability with a minimum human interference.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Group decision making plays an important role in today’s organisations. The impact of decision making is so high and complex, that rarely the decision making process is made individually. In Group Decision Argumentation, there is a set of participants, with different profiles and expertise levels, that exchange ideas or engage in a process of argumentation and counter-argumentation, negotiate, cooperate, collaborate or even discuss techniques and/or methodologies for problem solving. In this paper, it is proposed a Multi-Agent simulator for the behaviour representation of group members in a decision making process. Agents behave depending on rational and emotional intelligence and use persuasive argumentation to convince and make alternative choices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the proposal of an architecture for developing systems that interact with Ambient Intelligence (AmI) environments. This architecture has been proposed as a consequence of a methodology for the inclusion of Artificial Intelligence in AmI environments (ISyRAmI - Intelligent Systems Research for Ambient Intelligence). The ISyRAmI architecture considers several modules. The first is related with the acquisition of data, information and even knowledge. This data/information knowledge deals with our AmI environment and can be acquired in different ways (from raw sensors, from the web, from experts). The second module is related with the storage, conversion, and handling of the data/information knowledge. It is understood that incorrectness, incompleteness, and uncertainty are present in the data/information/knowledge. The third module is related with the intelligent operation on the data/information/knowledge of our AmI environment. Here we include knowledge discovery systems, expert systems, planning, multi-agent systems, simulation, optimization, etc. The last module is related with the actuation in the AmI environment, by means of automation, robots, intelligent agents and users.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Collaborative Work plays an important role in today’s organizations, especially in areas where decisions must be made. However, any decision that involves a collective or group of decision makers is, by itself complex, but is becoming recurrent in recent years. In this work we present the VirtualECare project, an intelligent multi-agent system able to monitor, interact and serve its customers, which are, normally, in need of care services. In last year’s there has been a substantially increase on the number of people needed of intensive care, especially among the elderly, a phenomenon that is related to population ageing. However, this is becoming not exclusive of the elderly, as diseases like obesity, diabetes and blood pressure have been increasing among young adults. This is a new reality that needs to be dealt by the health sector, particularly by the public one. Given this scenarios, the importance of finding new and cost effective ways for health care delivery are of particular importance, especially when we believe they should not to be removed from their natural “habitat”. Following this line of thinking, the VirtualECare project will be presented, like similar ones that preceded it. Recently we have also assisted to a growing interest in combining the advances in information society - computing, telecommunications and presentation – in order to create Group Decision Support Systems (GDSS). Indeed, the new economy, along with increased competition in today’s complex business environments, takes the companies to seek complementarities in order to increase competitiveness and reduce risks. Under these scenarios, planning takes a major role in a company life. However, effective planning depends on the generation and analysis of ideas (innovative or not) and, as a result, the idea generation and management processes are crucial. Our objective is to apply the above presented GDSS to a new area. We believe that the use of GDSS in the healthcare arena will allow professionals to achieve better results in the analysis of one’s Electronically Clinical Profile (ECP). This achievement is vital, regarding the explosion of knowledge and skills, together with the need to use limited resources and get better results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A optimização e a aprendizagem em Sistemas Multi-Agente são consideradas duas áreas promissoras mas relativamente pouco exploradas. A optimização nestes ambientes deve ser capaz de lidar com o dinamismo. Os agentes podem alterar o seu comportamento baseando-se em aprendizagem recente ou em objectivos de optimização. As estratégias de aprendizagem podem melhorar o desempenho do sistema, dotando os agentes da capacidade de aprender, por exemplo, qual a técnica de optimização é mais adequada para a resolução de uma classe particular de problemas, ou qual a parametrização é mais adequada em determinado cenário. Nesta dissertação são estudadas algumas técnicas de resolução de problemas de Optimização Combinatória, sobretudo as Meta-heurísticas, e é efectuada uma revisão do estado da arte de Aprendizagem em Sistemas Multi-Agente. É também proposto um módulo de aprendizagem para a resolução de novos problemas de escalonamento, com base em experiência anterior. O módulo de Auto-Optimização desenvolvido, inspirado na Computação Autónoma, permite ao sistema a selecção automática da Meta-heurística a usar no processo de optimização, assim como a respectiva parametrização. Para tal, recorreu-se à utilização de Raciocínio baseado em Casos de modo que o sistema resultante seja capaz de aprender com a experiência adquirida na resolução de problemas similares. Dos resultados obtidos é possível concluir da vantagem da sua utilização e respectiva capacidade de adaptação a novos e eventuais cenários.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Desde o seu aparecimento, a Internet teve um desenvolvimento e uma taxa de crescimento quase exponencial. Os mercados de comércio electrónico têm vindo a acompanhar esta tendência de crescimento, tornando-se cada vez mais comuns e populares entre comerciantes ou compradores/vendedores de ocasião. A par deste crescimento também foi aumentando a complexidade e sofisticação dos sistemas responsáveis por promover os diferentes mercados. No seguimento desta evolução surgiram os Agentes Inteligentes devido à sua capacidade de encontrar e escolher, de uma forma relativamente eficiente, o melhor negócio, tendo por base as propostas e restrições existentes. Desde a primeira aplicação dos Agentes Inteligentes aos mercados de comércio electrónico que os investigadores desta área, têm tentado sempre auto-superar-se arranjando modelos de Agentes Inteligentes melhores e mais eficientes. Uma das técnicas usadas, para a tentativa de obtenção deste objectivo, é a transferência dos comportamentos Humanos, no que toca a negociação e decisão, para estes mesmos Agentes Inteligentes. O objectivo desta dissertação é averiguar se os Modelos de Avaliação de Credibilidade e Reputação são uma adição útil ao processo de negociação dos Agente Inteligentes. O objectivo geral dos modelos deste tipo é minimizar as situações de fraude ou incumprimento sistemático dos acordos realizados aquando do processo de negociação. Neste contexto, foi proposto um Modelo de Avaliação de Credibilidade e Reputação aplicável aos mercados de comércio electrónico actuais e que consigam dar uma resposta adequada o seu elevado nível de exigência. Além deste modelo proposto também foi desenvolvido um simulador Multi-Agente com a capacidade de simular vários cenários e permitir, desta forma, comprovar a aplicabilidade do modelo proposto. Por último, foram realizadas várias experiências sobre o simulador desenvolvido, de forma a ser possível retirar algumas conclusões para o presente trabalho. Sendo a conclusão mais importante a verificação/validação de que a utilização de mecanismos de credibilidade e reputação são uma mais-valia para os mercado de comércio electrónico.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electricity markets are complex environments with very particular characteristics. A critical issue regarding these specific characteristics concerns the constant changes they are subject to. This is a result of the electricity markets’ restructuring, which was performed so that the competitiveness could be increased, but it also had exponential implications in the increase of the complexity and unpredictability in those markets scope. The constant growth in markets unpredictability resulted in an amplified need for market intervenient entities in foreseeing market behaviour. The need for understanding the market mechanisms and how the involved players’ interaction affects the outcomes of the markets, contributed to the growth of usage of simulation tools. Multi-agent based software is particularly well fitted to analyze dynamic and adaptive systems with complex interactions among its constituents, such as electricity markets. This dissertation presents ALBidS – Adaptive Learning strategic Bidding System, a multiagent system created to provide decision support to market negotiating players. This system is integrated with the MASCEM electricity market simulator, so that its advantage in supporting a market player can be tested using cases based on real markets’ data. ALBidS considers several different methodologies based on very distinct approaches, to provide alternative suggestions of which are the best actions for the supported player to perform. The approach chosen as the players’ actual action is selected by the employment of reinforcement learning algorithms, which for each different situation, simulation circumstances and context, decides which proposed action is the one with higher possibility of achieving the most success. Some of the considered approaches are supported by a mechanism that creates profiles of competitor players. These profiles are built accordingly to their observed past actions and reactions when faced with specific situations, such as success and failure. The system’s context awareness and simulation circumstances analysis, both in terms of results performance and execution time adaptation, are complementary mechanisms, which endow ALBidS with further adaptation and learning capabilities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes a multi-agent brokerage platform for near real time advertising personalisation organised in three layers: user interface, agency and marketplace. The personalisation is based on the classification of viewer profiles and advertisements (ads). The goal is to provide viewers with a personalised advertising alignment during programme intervals. The enterprise interface agents upload new ads and negotiation profiles to producer agents and new user and negotiation profiles to distributor agents. The agency layer is composed of agents that represent ad producer and media distributor enterprises as well as the market regulator. The enterprise agents offer data upload and download operations as Web Services and register the specification of these interfaces at an UDDI registry for future discovery. The market agent supports the registration and deregistration of enterprise delegate agents at the marketplace. This paper addresses the marketplace layer, an agent-based negotiation platform per se, where delegates of the relevant advertising agencies and programme distributors negotiate to create the advertising alignment that best fits a viewer profile and the advertising campaigns available. The whole brokerage platform is being developed in JADE, a multi-agent development platform. The delegate agents download the negotiation profile and upload the negotiation results from / to the corresponding enterprise agent. In the meanwhile, they negotiate using the Iterated Contract Net protocol. All tools and technologies used are open source.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes how MPEG-4 object based video (obv) can be used to allow selected objects to be inserted into the play-out stream to a specific user based on a profile derived for that user. The application scenario described here is for personalized product placement, and considers the value of this application in the current and evolving commercial media distribution market given the huge emphasis media distributors are currently placing on targeted advertising. This level of application of video content requires a sophisticated content description and metadata system (e.g., MPEG-7). The scenario considers the requirement for global libraries to provide the objects to be inserted into the streams. The paper then considers the commercial trading of objects between the libraries, video service providers, advertising agencies and other parties involved in the service. Consequently a brokerage of video objects is proposed based on negotiation and trading using intelligent agents representing the various parties. The proposed Media Brokerage Platform is a multi-agent system structured in two layers. In the top layer, there is a collection of coarse grain agents representing the real world players – the providers and deliverers of media contents and the market regulator profiler – and, in the bottom layer, there is a set of finer grain agents constituting the marketplace – the delegate agents and the market agent. For knowledge representation (domain, strategic and negotiation protocols) we propose a Semantic Web approach based on ontologies. The media components contents should be represented in MPEG-7 and the metadata describing the objects to be traded should follow a specific ontology. The top layer content providers and deliverers are modelled by intelligent autonomous agents that express their will to transact – buy or sell – media components by registering at a service registry. The market regulator profiler creates, according to the selected profile, a market agent, which, in turn, checks the service registry for potential trading partners for a given component and invites them for the marketplace. The subsequent negotiation and actual transaction is performed by delegate agents in accordance with their profiles and the predefined rules of the market.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a distributed predictive control methodology for indoor thermal comfort that optimizes the consumption of a limited shared energy resource using an integrated demand-side management approach that involves a power price auction and an appliance loads allocation scheme. The control objective for each subsystem (house or building) aims to minimize the energy cost while maintaining the indoor temperature inside comfort limits. In a distributed coordinated multi-agent ecosystem, each house or building control agent achieves its objectives while sharing, among them, the available energy through the introduction of particular coupling constraints in their underlying optimization problem. Coordination is maintained by a daily green energy auction bring in a demand-side management approach. Also the implemented distributed MPC algorithm is described and validated with simulation studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With advancement in computer science and information technology, computing systems are becoming increasingly more complex with an increasing number of heterogeneous components. They are thus becoming more difficult to monitor, manage, and maintain. This process has been well known as labor intensive and error prone. In addition, traditional approaches for system management are difficult to keep up with the rapidly changing environments. There is a need for automatic and efficient approaches to monitor and manage complex computing systems. In this paper, we propose an innovative framework for scheduling system management by combining Autonomic Computing (AC) paradigm, Multi-Agent Systems (MAS) and Nature Inspired Optimization Techniques (NIT). Additionally, we consider the resolution of realistic problems. The scheduling of a Cutting and Treatment Stainless Steel Sheet Line will be evaluated. Results show that proposed approach has advantages when compared with other scheduling systems

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O objectivo da tese é demonstrar a adequação do paradigma dos mercados electrónicos baseados em agentes para transaccionar objectos multimédia em função do perfil dos espectadores. Esta dissertação descreve o projecto realizado no âmbito da plataforma de personalização de conteúdos em construção. O domínio de aplicação adoptado foi a personalização dos intervalos publicitários difundidos pelos distribuidores de conteúdos multimédia, i.e., pretende-se gerar em tempo útil o alinhamento de anúncios publicitários que melhor se adeqúe ao perfil de um espectador ou de um grupo de espectadores. O projecto focou-se no estudo e selecção das tecnologias de suporte, na concepção da arquitectura e no desenvolvimento de um protótipo que permitisse realizar diversas experiências nomeadamente com diferentes estratégias e tipos de mercado. A arquitectura proposta para a plataforma consiste num sistema multiagente organizado em três camadas que disponibiliza interfaces do tipo serviço Web com o exterior. A camada de topo é constituída por agentes de interface com o exterior. Na camada intermédia encontram-se os agentes autónomos que modelam as entidades produtoras e consumidoras de componentes multimédia assim como a entidade reguladora do mercado. Estes agentes registam-se num serviço de registo próprio onde especificam os componentes multimédia que pretendem negociar. Na camada inferior realiza-se o mercado que é constituído por agentes delegados dos agentes da camada superior. O lançamento do mercado é efectuado através de uma interface e consiste na escolha do tipo de mercado e no tipo de itens a negociar. Este projecto centrou-se na realização da camada do mercado e da parte da camada intermédia de apoio às actividades de negociação no mercado. A negociação é efectuada em relação ao preço da transmissão do anúncio no intervalo em preenchimento. Foram implementados diferentes perfis de negociação com tácticas, incrementos e limites de variação de preço distintos. Em termos de protocolos de negociação, adoptou-se uma variante do Iterated Contract Net – o Fixed Iterated Contract Net. O protótipo resultante foi testado e depurado com sucesso.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

No decorrer dos últimos anos, os agentes (inteligentes) de software foram empregues como um método para colmatar as dificuldades associadas com a gestão, partilha e reutilização de um crescente volume de informação, enquanto as ontologias foram utilizadas para modelar essa mesma informação num formato semanticamente explícito e rico. À medida que a popularidade da Web Semântica aumenta e cada vez informação é partilhada sob a forma de ontologias, o problema de integração desta informação amplifica-se. Em semelhante contexto, não é expectável que dois agentes que pretendam cooperar utilizem a mesma ontologia para descrever a sua conceptualização do mundo. Inclusive pode revelar-se necessário que agentes interajam sem terem conhecimento prévio das ontologias utilizadas pelos restantes, sendo necessário que as conciliem em tempo de execução num processo comummente designado por Mapeamento de Ontologias [1]. O processo de mapeamento de ontologias é normalmente oferecido como um serviço aos agentes de negócio, podendo ser requisitado sempre que seja necessário produzir um alinhamento. No entanto, tendo em conta que cada agente tem as suas próprias necessidades e objetivos, assim como a própria natureza subjetiva das ontologias que utilizam, é possível que tenham diferentes interesses relativamente ao processo de alinhamento e que, inclusive, recorram aos serviços de mapeamento que considerem mais convenientes [1]. Diferentes matchers podem produzir resultados distintos e até mesmo contraditórios, criando-se assim conflitos entre os agentes. É necessário que se proceda então a uma tentativa de resolução dos conflitos existentes através de um processo de negociação, de tal forma que os agentes possam chegar a um consenso relativamente às correspondências que devem ser utilizadas na tradução de mensagens a trocar. A resolução de conflitos é considerada uma métrica de grande importância no que diz respeito ao processo de negociação [2]: considera-se que existe uma maior confiança associada a um alinhamento quanto menor o número de conflitos por resolver no processo de negociação que o gerou. Desta forma, um alinhamento com um número elevado de conflitos por resolver apresenta uma confiança menor que o mesmo alinhamento associado a um número elevado de conflitos resolvidos. O processo de negociação para que dois ou mais agentes gerem e concordem com um alinhamento é denominado de Negociação de Mapeamentos de Ontologias. À data existem duas abordagens propostas na literatura: (i) baseadas em Argumentação (e.g. [3] [4]) e (ii) baseadas em Relaxamento [5] [6]. Cada uma das propostas expostas apresenta um número de vantagens e limitações. Foram propostas várias formas de combinação das duas técnicas [2], com o objetivo de beneficiar das vantagens oferecidas e colmatar as suas limitações. No entanto, à data, não são conhecidas experiências documentadas que possam provar tal afirmação e, como tal, não é possível atestar que tais combinações tragam, de facto, o benefício que pretendem. O trabalho aqui apresentado pretende providenciar tais experiências e verificar se a afirmação de melhorias em relação aos resultados das técnicas individuais se mantém. Com o objetivo de permitir a combinação e de colmatar as falhas identificadas, foi proposta uma nova abordagem baseada em Relaxamento, que é posteriormente combinada com as abordagens baseadas em Argumentação. Os seus resultados, juntamente com os da combinação, são aqui apresentados e discutidos, sendo possível identificar diferenças nos resultados gerados por combinações diferentes e possíveis contextos de utilização.