971 resultados para Moisture Sorption Isotherm


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seeds of 39 seed lots of a total of twelve different crops were stored hermetically in a wide range of air-dry environments (2-25% moisture content at 0-50 degrees C), viability assessed periodically, and the seed viability equation constants estimated. Within a species, estimates of the constants which quantify absolute longevity (K-E) and the relative effects on longevity of moisture content (C-W) and temperature (C-H and C-Q) did not differ (P >0.05 to P >0.25) among lots. Comparison among the 12 crops provided variant estimates of K-E and C-W (P< 0.01), but common values of C-H and C-Q (0.0322 and 0.000454, respectively, P >0.25). Maize (Zea mays) provided the greatest estimate of K-E (9.993, s.e.= 0.456), followed by sorghum (Sorghum bicolor) (9.381, s.e. 0.428), pearl millet (Pennisetum typhoides) (9.336, s.e.= 0.408), sugar beet (Beta vulgaris) (8.988, s.e.= 0.387), African rice (Oryza glaberrima) (8.786, s.e.= 0.484), wheat (Triticum aestivum) (8.498, s.e.= 0.431), foxtail millet (Setaria italica) (8.478, s.e.= 0.396), sugarcane (Saccharum sp.) (8.454, s.e.= 0.545), finger millet (Eleusine coracana) (8.288, s.e.= 0.392), kodo millet (Paspalum scrobiculatum) (8.138, s.e.= 0.418), rice (Oryza sativa) (8.096, s.e.= 0.416) and potato (Solanum tuberosum) (8.037, s.e.= 0.397). Similarly, estimates of C-W were ranked maize (5.993, s.e.= 0.392), pearl millet (5.540, s.e.= 0.348), sorghum (5.379, s.e.=0.365), potato (5.152, s.e.= 0.347), sugar beet (4.969, s.e.= 0.328), sugar cane (4.964, s.e.= 0.518), foxtail millet (4.829, s.e.= 0.339), wheat (4.836, s.e.= 0.366), African rice (4.727, s.e.= 0.416), kodo millet (4.435, s.e.= 0.360), finger millet (4.345, s.e.= 0.336) and rice (4.246, s.e.= 0.355). The application of these constants to long-term seed storage is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been observed in the present study that when spores of Trichoderma harzianum (Th-2) isolate were applied in the sandy clay loam soil and continuously incubated for 4 months at 25 degrees C and 35 degrees C and at three water potentials, -0.03 MPa, -0.3 MPa and <-50 MPa, it has resulted in significantly reduced (P<0.05), growth of Fusarium oxysporum ciceri (Foc) on branches of chickpea plant. The pathogen population was greatly reduced in the moist soil (43 MPa) when compared with the wet soil (-0.03 MPa) at both temperatures which was indicated by greater colonization and growth of T. harzanum-2 on the branch pieces of chickpea plants. The pathogen was completely eradicated from the chickpea branch pieces, after 6 months at 35 degrees C in the moist soil. In air-dry soil (<-50 MPa), Foc survived in 100% of the branch pieces even after 6 months at both temperatures. When chickpea plant branch pieces having pathogen was sprayed with Th-2 antagonistic isolates of Trichoderma spp., the Th-2 isolate killed the pathogen up to minimum level (10-12%) after 5 months at 35 degrees C in the sandy clay loam soil. It can be concluded that in chickpea growing rainfed areas of Pakistan having sandy clay loam soil, Foc can be controlled by using specific Trichoderma spp., especially in the summer season as after harvest of the crop the temperature increased up and there is rainfall during this period which makes the soil moist. This practice will be able to reduce the inoculum of Foc during this hot period as field remain fallow till next crop is sown in most of the chickpea growing rainfed areas of Pakistan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maize silage nutritive quality is routinely determined by near infrared reflectance spectroscopy (NIRS). However, little is known about the impact of sample preparation on the accuracy of the calibration to predict biological traits. A sample population of 48 maize silages representing a wide range of physiological maturities was used in a study to determine the impact of different sample preparation procedures (i.e., drying regimes; the presence or absence of residual moisture; the degree of particle comminution) on resultant NIR prediction statistics. All silages were scanned using a total of 12 combinations of sample pre-treatments. Each sample preparation combination was subjected to three multivariate regression techniques to give a total of 36 predictions per biological trait. Increased sample preparations procedure, relative to scanning the unprocessed whole plant (WP) material, always resulted in a numerical minimisation of model statistics. However, the ability of each of the treatments to significantly minimise the model statistics differed. Particle comminution was the most important factor, oven-drying regime was intermediate, and residual moisture presence was the least important. Models to predict various biological parameters of maize silage will be improved if material is subjected to a high degree of particle comminution (i.e., having been passed through a 1 mm screen) and developed on plant material previously dried at 60 degrees C. The extra effort in terms of time and cost required to remove sample residual moisture cannot be justified. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oviposition behaviour is important when modelling the population dynamics of many invertebrates. The numbers of eggs laid are frequently used to describe fecundity, but this measure may differ significantly from realised fecundity. Oviposition has been shown to be important when describing the dynamics of slug populations, which are important agricultural pests. The numbers of eggs laid by Deroceras reticulatum and their viability were measured across a range of 16 temperature (4, 10, 15 and 23 degrees C) by moisture (33%, 42%, 53% and 58% by dry soil weight) experimental combinations. A fitted quadratic response surface model was used to estimate how D. reticulatum adjusted its egg laying to the surrounding temperature and moisture conditions, with most eggs being laid at a combination of 53% soil moisture and 18 degrees C. The number and proportion of viable eggs also covaried with temperature and moisture, suggesting that D. reticulatum may alter their investment in reproduction to maximise their fitness. We have shown that the number of viable eggs differs from the total number of eggs laid by D. reticulatum. Changes in egg viability with temperature and moisture may also be seen in other species and should be considered when modelling populations of egg-laying invertebrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A scheme to describe SDS-lysozyme complex formation has been proposed on the basis of isothermal titration calorimetry (ITC) and FTIR spectroscopy data. ITC isotherms are convoluted and reveal a marked effect of both SDS and lysozyme concentration on the stoichiometry of the SDS-lysozyme complex. The binding isotherms have been described with the aid of FTIR spectroscopy in terms of changes in the lysozyme structure and the nature of the SDS binding. At low SDS concentrations, ITC isotherms feature an exothermic region that corresponds to specific electrostatic binding of SDS to positively charged amino acid residues on the lysozyme surface. This leads to charge neutralization of the complex and precipitation. The number of SDS molecules that bind specifically to lysozyme is approximately 8, as determined from our ITC isotherms, and is independent of lysozyme solution concentration. At high SDS concentrations, hydrophobic cooperative association dominates the binding process. Saturated binding stoichiometries as a molar ratio of SDS per molecule of lysozyme range from 220: 1 to 80: 1, depending on the lysozyme solution concentration. A limiting value of 78: 1 has been calculated for lysozyme solution concentrations above 0.25 mM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold pitched roofs, with their form of construction situating insulation on a horizontal ceiling, are intrinsically vulnerable to condensation. This study reports the results derived from using a simulation package (Heat, Air and Moisture modelling tool, or HAM-Tools) to investigate the risk of condensation in cold pitched roofs in housing fitted with a vapour-permeable underlay (VPU) of known characteristics. In order to visualize the effect of the VPUs on moisture transfer, several scenarios were modelled, and compared with the results from a conventional bituminous felt with high resistance (200 MNs/g, Sd = 40 m). The results indicate that ventilation is essential in the roof to reduce condensation. However, a sensitivity analysis proved that reducing the overall tightness of the ceiling and using lower-resistance VPUs would help in controlling condensation formation in the roof. To a large extent, the proposed characteristic performance of the VPU as predicted by manufacturers and some researchers may only be realistic if gaps in the ceiling are sealed completely during construction, which may be practically difficult given current construction practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Product quality is an important determinant of consumer acceptance. Consistent oat flake properties are thus necessary in the mill as well as in the marketplace. The effects of kilning and tempering conditions (30, 60 or 90 min at 80, 95 or 110 degrees C) on flake peroxidase activity, size, thickness, strength and water absorption were therefore determined. After kilning, some peroxidase activity remained but steaming and tempering effectively destroyed the activity of these enzymes. Thus the supposed protective effect of kilning or groat durability was not confirmed. Kilning resulted in an increase in flake specific weight, but no other significant effect on flake quality was observed. Tempering time and temperature interacted significantly to produce complex effects on flake specific weight, thickness and water absorption. Flake thickness and specific weight were significantly correlated (r = 0.808, n = 54). Longer tempering times resulted in an increased fines' fraction, from 1.45% at 30 min to 1.75% at 90 min. It is concluded that whilst kilning has little effect on flake quality, the heat treatment immediately prior to flaking, can be used to adjust flake quality independently of flake thickness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research interest in oats has focussed on their nutritional value, but there have been few studies of their food processing. Heat treatment is characteristic of oat processing, as it is needed to inactivate lipase and to facilitate flaking. A Texture Analyser was used to characterise the mechanical properties of unkilned and kilned oat groats after steaming and tempering in an oven for 30, 60 and 90 min at 80, 95 and 110 degrees C. Maximum force, number of peaks before maximum and final force after 5s hold were used to characterise the behaviour of the groats during compression. Kilned groats were larger and softer before steaming. After steaming and tempering, the moisture content of the kilned groats was higher than for unkilned groats. Hot, steamed oats were softer than cold, unsteamed groats, indicated by a decrease in maximum force from 59 to 55 N, and there was no significant difference between kilned and unkilned groats. However, higher temperatures during tempering increased maximum force. These results suggest that mild steam treatment yields softer oat groats, whereas cold or over-treated groats tend to be harder. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical framework is developed for the evolution of baroclinic waves with latent heat release parameterized in terms of vertical velocity. Both wave–conditional instability of the second kind (CISK) and large-scale rain approaches are included. The new quasigeostrophic framework covers evolution from general initial conditions on zonal flows with vertical shear, planetary vorticity gradient, a lower boundary, and a tropopause. The formulation is given completely in terms of potential vorticity, enabling the partition of perturbations into Rossby wave components, just as for the dry problem. Both modal and nonmodal development can be understood to a good approximation in terms of propagation and interaction between these components alone. The key change with moisture is that growing normal modes are described in terms of four counterpropagating Rossby wave (CRW) components rather than two. Moist CRWs exist above and below the maximum in latent heating, in addition to the upper- and lower-level CRWs of dry theory. Four classifications of baroclinic development are defined by quantifying the strength of interaction between the four components and identifying the dominant pairs, which range from essentially dry instability to instability in the limit of strong heating far from boundaries, with type-C cyclogenesis and diabatic Rossby waves being intermediate types. General initial conditions must also include passively advected residual PV, as in the dry problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss how synoptic-scale variability controls the transport of atmospheric water vapour by mid-latitude cyclones. Idealised simulations are used to investigate quantitatively what factors determine the magnitude of cyclone moisture transport. It is demonstrated that large-scale ascent on the warmconveyor belt and shallow cumulus convection are equally important for ventilating moisture from the boundary layer into the free troposphere, and that ventilated moisture can be transported large distances eastwards and polewards by the cyclone, before being returned to the surface as precipitation. The initial relative humidity is shown to have little affect on the ability of the cyclone to transport moisture, whilst the absolute temperature and meridional temperature gradient provide much stronger controls. Scaling arguments are presented to quantify the dependence of moisture transport on large-scale and boundary-layer parameters. It is shown that ventilation by shallow convection and warm-conveyor belt advection vary in the same way with changes to large-scale parameters. However, shallow convective ventilation has a much stronger dependence on boundary-layer parameters than warm-conveyor belt ventilation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the results of a systematic study of the influence of carbon surface oxidation on Dubinin–Astakhov isotherm parameters obtained from the fitting of CO2 adsorption data. Using GCMC simulations of adsorption on realistic VPC models differing in porosity and containing the most frequently occurring carbon surface functionalities (carboxyls, hydroxyls and carbonyls) and their mixtures, it is concluded that the maximum adsorption calculated from the DA model is not strongly affected by the presence of oxygen groups. Unfortunately, the same cannot be said of the remaining two parameters of this model i.e. the heterogeneity parameter (n) and the characteristic energy of adsorption (E0). Since from the latter the pore diameters of carbons are usually calculated, by inverse-type relationships, it is concluded that they are questionable for carbons containing surface oxides, especially carboxyls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vertical structure of the relationship between water vapor and precipitation is analyzed in 5 yr of radiosonde and precipitation gauge data from the Nauru Atmospheric Radiation Measurement (ARM) site. The first vertical principal component of specific humidity is very highly correlated with column water vapor (CWV) and has a maximum of both total and fractional variance captured in the lower free troposphere (around 800 hPa). Moisture profiles conditionally averaged on precipitation show a strong association between rainfall and moisture variability in the free troposphere and little boundary layer variability. A sharp pickup in precipitation occurs near a critical value of CWV, confirming satellite-based studies. A lag–lead analysis suggests it is unlikely that the increase in water vapor is just a result of the falling precipitation. To investigate mechanisms for the CWV–precipitation relationship, entraining plume buoyancy is examined in sonde data and simplified cases. For several different mixing schemes, higher CWV results in progressively greater plume buoyancies, particularly in the upper troposphere, indicating conditions favorable for deep convection. All other things being equal, higher values of lower-tropospheric humidity, via entrainment, play a major role in this buoyancy increase. A small but significant increase in subcloud layer moisture with increasing CWV also contributes to buoyancy. Entrainment coefficients inversely proportional to distance from the surface, associated with mass flux increase through a deep lower-tropospheric layer, appear promising. These yield a relatively even weighting through the lower troposphere for the contribution of environmental water vapor to midtropospheric buoyancy, explaining the association of CWV and buoyancy available for deep convection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Arabian Sea is an important moisture source for Indian monsoon rainfall. The skill of climate models in simulating the monsoon and its variability varies widely, while Arabian Sea cold sea surface temperature (SST) biases are common in coupled models and may therefore influence the monsoon and its sensitivity to climate change. We examine the relationship between monsoon rainfall, moisture fluxes and Arabian Sea SST in observations and climate model simulations. Observational analysis shows strong monsoons depend on moisture fluxes across the Arabian Sea, however detecting consistent signals with contemporaneous summer SST anomalies is complicated in the observed system by air/sea coupling and large-scale induced variability such as the El Niño-Southern Oscillation feeding back onto the monsoon through development of the Somali Jet. Comparison of HadGEM3 coupled and atmosphere-only configurations suggests coupled model cold SST biases significantly reduce monsoon rainfall. Idealised atmosphere-only experiments show that the weakened monsoon can be mainly attributed to systematic Arabian Sea cold SST biases during summer and their impact on the monsoon-moisture relationship. The impact of large cold SST biases on atmospheric moisture content over the Arabian Sea, and also the subsequent reduced latent heat release over India, dominates over any enhancement in the land-sea temperature gradient and results in changes to the mean state. We hypothesize that a cold base state will result in underestimation of the impact of larger projected Arabian Sea SST changes in future climate, suggesting that Arabian Sea biases should be a clear target for model development.