1000 resultados para Moiré gratings effect
Resumo:
In this study four irons were casted with different chromium and vanadium contents: 2.66% Cr, 5.01% Cr, 2.51% V and 5.19% V. Their microstructure is composed of: ledeburite, graphite and M(3)C carbides (cementite). Pin-abrasion tests were carried out using fixed alumina abrasive grains at different loads: 1, 2, 4.6 and 10 N. The wear surface and the abrasive paper were examined by scanning electron microscopy for identifying the wear micromechanism. The results reveal that the mass loss increased with the load increase, and the effect of the percentage of chromium on mass loss is inverted when the load is increased from 4.6 to 10 N; for 4.6 N the mass loss decreased when the chromium percentage was increased from 2.66% to 5.01%. Nevertheless, for 10 N the mass loss increased when the chromium percentage was increased. The worn surfaces of the materials tested at 1 N show microcutting caused by the abrasive tip that produces continuous microchips. The worn surfaces and the abrasive paper tested at 10 N show continuous microchips and brittle debris. The results show that high pressures produce a brittle wear mechanism and low pressures produce a more ductile wear micromechanism, for this, the applied pressure defines the dependence between the wear resistance and wear micromechanism. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We assess the effect of the choice of spanwise periodic length on simulations of the flow around a fixed circular cylinder. The Reynolds number is set to 400 because, at this value, both lift coefficient and shedding frequency show significant drop due to three-dimensional flow structures. From the analysis of the three-dimensionalities of the wake and of the integral quantities such as Strouhal number, RMS of lift coefficient and energy contained in the three-dimensional portion of the flow we obtain an estimate of the minimum spanwise length to satisfactorily represent the flow. Furthermore, we observe a distinct wake behavior when the spanwise length is approximately the mode B instability wavelength. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Hydrodynamic journal bearings are susceptible to static angular misalignment, resulting from improper assemblage, elastic and thermal distortion of the shaft and bearing housing, and also manufacturing errors. Several previous works on the theme, both theoretical and experimental, focused on the determination of the static properties of angular misaligned bearings. Although some reports show agreement between theoretical and experimental results, the increasingly severe operating conditions of hydrodynamic bearings (heavy loads and high rotational speeds) require more reliable theoretical formulations for the evaluation of the journal performance during the design process. The consideration of the angular misalignment in the derivation of the Reynolds equation is presented here in detail, showing that properly conducted geometric and magnitude-order analyses lead to the inclusion of an axial wedge effect term that influences the velocity and pressure fields in the lubricant film. Numerical results evidence that this axial wedge effect more significantly affects the hydrodynamic forces and static operational properties of tilted short journal bearings.
Resumo:
Compliant mechanisms can achieve a specified motion as a mechanism without relying on the use of joints and pins. They have broad application in precision mechanical devices and Micro-Electro Mechanical Systems (MEMS) but may lose accuracy and produce undesirable displacements when subjected to temperature changes. These undesirable effects can be reduced by using sensors in combination with control techniques and/or by applying special design techniques to reduce such undesirable effects at the design stage, a process generally termed ""design for precision"". This paper describes a design for precision method based on a topology optimization method (TOM) for compliant mechanisms that includes thermal compensation features. The optimization problem emphasizes actuator accuracy and it is formulated to yield optimal compliant mechanism configurations that maximize the desired output displacement when a force is applied, while minimizing undesirable thermal effects. To demonstrate the effectiveness of the method, two-dimensional compliant mechanisms are designed considering thermal compensation, and their performance is compared with compliant mechanisms designs that do not consider thermal compensation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Flow pumps are important tools in several engineering areas, such as in the fields of bioengineering and thermal management solutions for electronic devices. Nowadays, many of the new flow pump principles are based on the use of piezoelectric actuators, which present some advantages such as miniaturization potential and lower noise generation. In previous work, authors presented a study of a novel pump configuration based on placing an oscillating bimorph piezoelectric actuator in water to generate flow. It was concluded that this oscillatory behavior (such as fish swimming) yields vortex interaction, generating flow rate due to the action and reaction principle. Thus, following this idea the objective of this work is to explore this oscillatory principle by studying the interaction among generated vortex from two bimorph piezoelectric actuators oscillating inside the same pump channel, which is similar to the interaction of vortex generated by frontal fish and posterior ones when they swim together in a group formation. It is shown that parallel-series configurations of bimorph piezoelectric actuators inside the same pump channel provide higher flow rates and pressure for liquid pumping than simple parallel-series arrangements of corresponding single piezoelectric pumps, respectively. The scope of this work includes structural simulations of bimorph piezoelectric actuators, fluid flow simulations, and prototype construction for result validation.
Resumo:
The 475 degrees C embrittlement in stainless steels is a well-known phenomenon associated to alpha prime (alpha`) formed by precipitation or spinodal decomposition. Many doubts still remain on the mechanism of alpha` formation and its consequence on deformation and fracture mechanisms and corrosion resistance. In this investigation, the fracture behavior and corrosion resistance of two high performance ferritic stainless steels were investigated: a superferritic DIN 1.4575 and MA 956 superalloy were evaluated. Samples of both stainless steels (SS) were aged at 475 degrees C for periods varying from 1 to 1,080 h. Their fracture surfaces were observed using scanning electron microscopy (SEM) and the cleavage planes were determined by electron backscattering diffraction (EBSD). Some samples were tested for corrosion resistance using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. Brittle and ductile fractures were observed in both ferritic stainless steels after aging at 475 degrees C. For aging periods longer than 500 h, the ductile fracture regions completely disappeared. The cleavage plane in the DIN 1.4575 samples aged at 475 degrees C for 1,080 h was mainly {110}, however the {102}, {314}, and {131} families of planes were also detected. The pitting corrosion resistance decreased with aging at 475 degrees C. The effect of alpha prime on the corrosion resistance was more significant in the DIN 1.4575 SS comparatively to the Incoloy MA 956.
Resumo:
High temperature gas nitrided AISI 304L austenitic stainless steel containing 0.55 wt% N in solid solution, was corrosion, erosion and corrosion-erosion tested in a jet-like device, using slurry composed of 3.5% NaCl and quartz particles. Scanning electron microscopy analysis of the damaged surfaces, mass loss measurements and electrochemical test results were used to understand the effect of nitrogen on the degradation mechanisms. Increasing the nitrogen content improved the corrosion, erosion and corrosion-erosion resistance of the AISI 304L austenitic stainless steel. Smoother wear mark contours observed on the nitrided surfaces indicate a positive effect of nitrogen on the reduction of the corrosion-erosion synergism. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Twelve samples with different grain sizes were prepared by normal grain growth and by primary recrystallization, and the hysteresis dissipated energy was measured by a quasi-static method. Results showed a linear relation between hysteresis energy loss and the inverse of grain size, which is here called Mager`s law, for maximum inductions from 0.6 to 1.5 T, and a Steinmetz power law relation between hysteresis loss and maximum induction for all samples. The combined effect is better described by a Mager`s law where the coefficients follow Steinmetz law.
Resumo:
The effect of different precracking methods on the results of linear elastic K(Ic) fracture toughness testing with medium-density polyethylene (MDPE) was investigated. Cryogenic conditions were imposed in order to obtain valid K(Ic) values from specimens of suitable size. Most conservative K(Ic) values were obtained by slow pressing a fresh razor blade at the notch root of the specimen. Due to the low deformation level imposed on the crack tip region, the slow pressing razor blade technique also produced less scatter in fracture toughness results. It has been shown that the slow stable crack growth preceding catastrophic brittle failure during K(Ic) tests in MOPE under cryogenic conditions should not be disregarded as it has relevant physical meaning and may affect the fracture toughness results. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The effect of ultraviolet exposure on the biodegration of poly(propylene) without (PP) and with 0.3 (wt/wt) (PPOx) pro-oxidant additives, produced by extrusion was studied. After UV exposure the samples were submitted to biodegradation (weight loss) in prepared soils. The samples before and after UV exposure were analyzed using differential scanning calorimetry, Fourier transform infrared spectroscopy, size exclusion chromatography, and optical microscopy. The exposure to UV radiation lead to more intense degradation of PPOx than of PP; the amount of carbonyl groups was larger for the PPOx samples than for PP, as well as the decrease in the T(m) and in the molecular weight. The samples exposed to UV radiation showed some level of fragmentation after 56 days when placed in the prepared soil; the samples which were exposed to UV for 480 h presented just a small weight loss. POLYM. ENG. SCI., 49:123-128, 2009. (C) 2008 Society of Plastics Engineers
Resumo:
Before one models the effect of plastic deformation on magnetoacoustic emission (MAE), one must first treat non-180 degrees domain wall motion. In this paper, we take the Alessandro-Beatrice-Bertotti-Montorsi (ABBM) model and modify it to treat non-180 degrees wall motion. We then insert a modified stress-dependent Jiles-Atherton model, which treats plastic deformation, into the modified ABBM model to treat MAE and magnetic Barkhausen noise (HBN). In fitting the dependence of these quantities on plastic deformation, we apply a model for when deformation gets into the stage where dislocation tangles are formed, noting two chief effects, one due to increased density of emission centers owing to increased dislocation density, and the other due to a more gentle increase in the residual stress in the vicinity of the dislocation tangles as deformation is increased.
Resumo:
In this study, the influence of the processing conditions and the addition of trans-polyoctenylene rubber (TOR) on Mooney viscosity, tensile properties, hardness, tearing resistance, and resilience of natural rubber/styrene-butadiene rubber blends was investigated. The results obtained are explained in light of dynamic mechanical and morphological analyses. Increasing processing time produced a finer blend morphology, which resulted in an improvement in the mechanical properties. The addition of TOR involved an increase in hardness, a decrease in tear resistance, and no effect on the resilience. It resulted in a large decrease in the Mooney viscosity and a slight decrease in the tensile properties if the components of the compounds were not properly mixed. The results indicate that TOR acted more as a plasticizer than a compatibilizer. (c) 2008 Wiley Periodicals, Inc.
Resumo:
Cold-rolled (0-19% of reduction) 0.5% Si electrical steel sheets were studied in detail, including macro and micro residual stress measurements, crystallographic texture, dc-hysteresis curves and iron losses. Even for the smallest deformation, losses increase significantly, with large increase of the hysteresis losses, whereas the anomalous losses reduce slightly. The residual microstresses are similar to 150-350 MPa, whereas residual macrostresses are compressive, similar to 50 MPa. The large increase of the hysteresis losses is attributed to the residual microstresses. The dislocation density estimated by X-ray diffraction is in reasonable agreement with that predicted from the Sablik et al. model for effect of plastic deformation on hysteresis. The intensity of the texture fibers {1 1 1}< u v w > and < 110 >//RD (RD = rolling direction) increases with the reduction. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This work investigates the influence of the addition of cerium (IV) ions on the anticorrosion properties of organic-inorganic hybrid coatings applied to passivated tin coated steel. In order to evaluate the specific effect of cerium (IV) addition on nanostructural features of the organic and inorganic phases of the hybrid coating, the hydrolytic polycondensation of silicon alkoxide and the radical polymerization of the methyl methacrylate (MMA) function were induced separately. The corrosion resistance of the coatings was evaluated by means of linear polarization, Tafel type curves and electrochemical impedance measurements. The impedance results obtained for the hybrid coatings were discussed based on an electrical equivalent circuit used to fit the experimental data. The electrochemical results clearly showed the improvement of the protective properties of the organic-inorganic hybrid coating mainly when the cerium (IV) was added to the organic phase solution precursor, which seemed to be due to the formation of a more uniform and densely reticulated siloxane-PMMA film. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND: The use of the volatile salt ammonium carbamate in protein downstream processing has recently been proposed. The main advantage of using volatile salts is that they can be removed from precipitates and liquid effluents through pressure reduction or temperature increase. Although previous studies showed that ammonium carbamate is efficient as a precipitant agent, there was evidence of denaturation in some enzymes. In this work, the effect of ammonium carbamate on the stability of five enzymes was evaluated. RESULTS: Activity assays showed that alpha-amylase (1,4-alpha-D-glucan glucanohydrolase, EC 3.2.1.1), lysozyme (1,4-beta-N-acetylmuramoylhydrolase, EC 3.2.1.17) and lipase (triacyl glycerol acyl hydrolase, EC 3.1.1.3) did not undergo activity loss in ammonium carbamate solutions with concentrations from 1.0 to 5.0 mol kg(-1), whereas cellulase complex (1,4-(1,3 : 14)-beta-D-glucan 4-glucano-hydrolase, EC 3.2.1.4) and peroxidase (hydrogen peroxide oxidoreductase, EC 1.11.1.7) showed an average activity loss of 55% and 44%, respectively. Precipitation assays did not show enzyme denaturation or phase separation for alpha-amylase and lipase, while celullase and peroxidase precipitated with some activity reduction. Analysis of similar experiments with ammonium and sodium sulfate did not affect the activity of enzymes. CONCLUSION: Celullase and peroxidase were denatured by ammonium carbamate. While more systematic studies are not available, care must be taken in designing a protein precipitation with this salt. The results suggest that the generally accepted idea that salts that denature proteins tend to solubilize them does not hold for ammonium carbamate. (C) 2010 Society of Chemical Industry