1000 resultados para Modelos lineares (Estatística)
Resumo:
A partir de uma base de dados de ações da Telemar S.A., do período de 21/09/1998 a 21/10/2002, e de opções de 02/10/2000 a 21/10/2002, foi avaliado qual o previsor que prevê com maior precisão a volatilidade futura: o implícito ou o estatístico. A volatilidade implícita foi obtida por indução retroativa da fórmula de Black-Scholes. As previsões estatísticas da volatilidade foram obtidas pelos modelos de média móvel ponderada igualmente, modelo GARCH, EGARCH e FIGARCH. Os resultados das regressões do conteúdo de informação revelam que a volatilidade implícita ponderada possui substancial quantidade de informações sobre a volatilidade um passo à frente, pois apresenta o maior R2 ajustado de todas as regressões. Mesmo sendo eficiente, os testes indicam que ela é viesada. Porém, a estatística Wald revela que os modelos EGARCH e FIGARCH são previsores eficientes e não viesados da variação absoluta dos retornos da Telemar S.A. entre t e t + 1, apesar do R2 um pouco inferior a volatilidade implícita. Esse resultado a partir de parâmetros baseados em dados ex-post, de certo modo refuta a hipótese de que as opções possibilitam melhores informações aos participantes do mercado sobre as expectativas de risco ao longo do próximo dia Nas regressões do poder de previsão, que testam a habilidade da variável explicativa em prever a volatilidade ao longo do tempo de maturidade da opção, os resultados rejeitam a hipótese da volatilidade implícita ser um melhor previsor da volatilidade futura. Elas mostram que os coeficientes das volatilidades implícitas e incondicionais são estatisticamente insignificantes, além do R2 ajustado ser zero ou negativo. Isto, a princípio, conduz à rejeição da hipótese de que o mercado de opções é eficiente. Por outro lado, os resultados apresentados pelos modelos de volatilidade condicional revelam que o modelo EGARCH é capaz de explicar 60% da volatilidade futura. No teste de previsor eficiente e não viesado, a estatística Wald não rejeita esta hipótese para o modelo FIGARCH. Ou seja, um modelo que toma os dados ex-post consegue prever a volatilidade futura com maior precisão do que um modelo de natureza forward looking, como é o caso da volatilidade implícita. Desse modo, é melhor seguir a volatilidade estatística - expressa pelo modelo FIGARCH, para prever com maior precisão o comportamento futuro do mercado.
Resumo:
Este trabalho visa realizar o estudo do comportamento dinâmico de um eixo rotor flexível, modelado segundo a teoria de Euler-Bernoulli e caracterizar as respostas periódicas de sistemas LTI (sistemas lineares invariantes no tempo) e sistemas fracamente não lineares de ordem arbitrária. Para tanto, é utilizada a base dinâmica gerada pela resposta impulso ou solução fundamental. O comportamento dinâmico de um eixo rotor flexível foi discutido em termos da função de Green espacial e calculada de maneira não-modal. Foi realizado um estudo do problema de autovalor para o caso de um um eixo rotor biapoiado. As freqüências são obtidas e os modos escritos em termos da base dinâmica e da velocidade de rotação. As respostas periódicas de sistemas LTI, utilizadas nas aproximações com sistemas fracamente não lineares, são obtidas, independentemente da ordem do sistema, como um operador integral onde o núcleo é a função de Green T-periódica. Esta função é caracterizada em termos das propriedades de continuidade, periodicidade e salto da função de Green T-periódica, e da base dinâmica Simulações foram realizadas para sistemas concentrados, matriciais e escalares, com o objetivo de mostrar a validade da metodologia desenvolvida com as propriedades da função de Green T-periódica. Foi abordado um modelo não-linear para uma centrífuga utilizada na indústria textil [Starzinski, 1977].
Resumo:
A motivação deste trabalho é relacionar a teoria da estatística com uma clássica aplicação prática na indústria, mais especificamente no mercado financeiro brasileiro. Com o avanço de hardware, sistemas de suporte à decisão se tornaram viáveis e desempenham hoje papel fundamental em muitas áreas de interesse como logística, gestão de carteiras de ativos, risco de mercado e risco de crédito. O presente trabalho tem como objetivos principais propor uma metodologia de construção de modelos de escoragem de crédito e mostrar uma aplicação prática em operações de empréstimo pessoal com pagamento em cheques. A parte empírica utiliza dados reais de instituição financeira e duas metodologias estatísticas, análise de regressão linear múltipla e análise de regressão probit. São comparados os resultados obtidos a partir da aplicação de modelos de escoragem de crédito desenvolvidos com cada metodologia com os resultados obtidos sem a utilização de modelos. Assim, demonstra-se o incremento de resultado da utilização de modelos de escoragem e conclui-se se há ou não diferenças significativas entre a utilização de cada metodologia. A metodologia de construção de modelos de escoragem é composta basicamente por duas etapas, definição das relações e da equação para cálculo do escore e a definição do ponto de corte. A primeira consiste em uma busca por relações entre as variáveis cadastrais e de comportamento do cliente, variáveis da operação e o risco de crédito caracterizado pela inadimplência. A segunda indica o ponto em que o risco deixa de ser interessante e o resultado esperado da operação passa a ser negativo. Ambas as etapas são descritas com detalhes e exemplificadas no caso de empréstimos pessoais no Brasil. A comparação entre as duas metodologias, regressão linear e regressão probit, realizada no caso de empréstimos pessoais, considerou dois aspectos principais dos modelos desenvolvidos, a performance estatística medida pelo indicador K-S e o resultado incremental gerado pela aplicação do modelo. Foram obtidos resultados similares com ambas as metodologias, o que leva à conclusão de que a discussão de qual das duas metodologias utilizar é secundária e que se deve tratar a gestão do modelo com maior profundidade.
Resumo:
Dentre os principais desafios enfrentados no cálculo de medidas de risco de portfólios está em como agregar riscos. Esta agregação deve ser feita de tal sorte que possa de alguma forma identificar o efeito da diversificação do risco existente em uma operação ou em um portfólio. Desta forma, muito tem se feito para identificar a melhor forma para se chegar a esta definição, alguns modelos como o Valor em Risco (VaR) paramétrico assumem que a distribuição marginal de cada variável integrante do portfólio seguem a mesma distribuição , sendo esta uma distribuição normal, se preocupando apenas em modelar corretamente a volatilidade e a matriz de correlação. Modelos como o VaR histórico assume a distribuição real da variável e não se preocupam com o formato da distribuição resultante multivariada. Assim sendo, a teoria de Cópulas mostra-se um grande alternativa, à medida que esta teoria permite a criação de distribuições multivariadas sem a necessidade de se supor qualquer tipo de restrição às distribuições marginais e muito menos as multivariadas. Neste trabalho iremos abordar a utilização desta metodologia em confronto com as demais metodologias de cálculo de Risco, a saber: VaR multivariados paramétricos - VEC, Diagonal,BEKK, EWMA, CCC e DCC- e VaR histórico para um portfólio resultante de posições idênticas em quatro fatores de risco – Pre252, Cupo252, Índice Bovespa e Índice Dow Jones
Resumo:
This paper presents a study carried out with customers with credit card of a large retailer to measure the risk of abandonment of a relationship, when this has already purchase history. Two activities are the most important in this study: the theoretical and methodological procedures. The first step was to the understanding of the problem, the importance of theme and the definition of search methods. The study brings a bibliographic survey comprising several authors and shows that the loyalty of customers is the basis that gives sustainability and profitability for organizations of various market segments, examines the satisfaction as the key to success for achievement and specially for the loyalty of customers. To perform this study were adjusted logistic-linear models and through the test Kolmogorov - Smirnov (KS) and the curve Receiver Operating Characteristic (ROC) selected the best model. Had been used cadastral and transactional data of 100,000 customers of credit card issuer, the software used was SPSS which is a modern system of data manipulation, statistical analysis and presentation graphics. In research, we identify the risk of each customer leave the product through a score.
Resumo:
Este trabalho tem como objetivo o levantamento e análise de fatores intervenientes na capacidade de processamento de veículos em cabines de praças de pedágio com o recolhimento manual de tarifas. Buscando o entendimento de como estes fatores interferem nos tempos de atendimento nas cabines foi realizada uma análise estatística e posterior modelagem, que utilizou redes neurais artificiais. Redes neurais artificiais são úteis no entendimento de problemas com alto grau de complexidade, que agregam diversas variáveis de entrada com relações não-lineares entre si. As variáveis de entrada escolhidas para a modelagem foram forma de pagamento, intensidade de fluxo, valor das tarifas e classes de veículos. A variável de saída foi o tempo de atendimento nas cabines de cobrança de pedágios. Foram obtidos três modelos que buscaram refletir a variação dos tempos de atendimento para um mesmo conjunto de dados de entrada: Modelo de Tempos Mínimos de Atendimento; Modelo de 85° Percentil de Tempos de Atendimento, e; Modelo de Tempos Máximos de Atendimento. As análises de sensibilidade dos modelos indicaram que tempos de atendimento são fortemente influenciados pelo fluxo de veículos nas praças. Quanto mais intenso o fluxo de veículos, tempos mínimos de atendimento tendem a sofrer leve aumento, indicando pequena perda de rendimento do processo. Perda de rendimento pode ser resultado de (i) necessidade de digitação das placas de licença dos veículos no sistema operacional das praças-dificuldade de visualização das mesmas em situação de filas, e (ii) desgaste físico dos arrecadadores. O desgaste físico dos arrecadadores também se apresenta como provável causa para o aumento de tempos mínimos de atendimento para fluxos altos. Quanto mais intenso o fluxo de veículos, menores são os tempos máximos de atendimento. Quanto maior o fluxo de veículos nas praças, as modelagens indicam uma maior estabilidade do sistema com relação ao processamento de veículos.
Resumo:
O trabalho realiza uma investigação empírica sobre impacto do microcrédito produtivo orientadode um banco comercial privado, sobre renda disponível no domicílio de microempreendedores. O objeto de estudo foram os clientes da Real Microcrédito, uma empresa resultante da parceria entre o Banco Real, terceiro maior banco privado brasileiro, e a ONG Acción International,organização não-governamental com foco em microfinanças. Foram analisados 22.994 contratos de concessão de microcrédito, correspondendo a um total de 20.628 clientes do período de agosto de 2004 a abril de 2007, dos quais 2.366 possuíam duas ou mais tomadas de crédito. A variável dependente adotada para análise do impacto da renda do domicílio foi vendas médias. Utilizando a técnica de modelos hierárquicos lineares (HLM) para analisar os dados de evolução do indivíduo ao longo do tempo não foi possível concluir que os indivíduos apresentam mudanças nas suas vendas médias ao longo do tempo, pois não foi possível afirmar com significância estatística que há mudanças nas trajetórias das vendas médias para o conjunto de tomadores no período analisado. Analisando-se as diferenças entre os indivíduos foi possível concluir que a variável gênero feminino está associada ao aumento de renda do indivíduo participante do programa. No caso das demais variáveis analisadas no segundo nível (grupo solidário, localização geográfica e atividade econômica) não foi possível identificar mudanças da renda estatisticamente significativas explicadas por elas. A tese apresenta duas contribuições para o avanço do conhecimento no campo de microfinanças. A primeira é uma contribuição metodológica: o uso de modelos Hierárquicos Linerares para análise de impacto de microcrédito. Esta metodologia, inovadora, supera diversos problemas existentes nas metodologias tradicionais de avaliação de impacto, tais como a definiçãode grupos de controle e possibilidade de diversos prazos de entrada no programa.
Resumo:
Resumo não disponível.
Resumo:
O objetivo deste trabalho é testar a aplicação de um modelo gráfico probabilístico, denominado genericamente de Redes Bayesianas, para desenvolver modelos computacionais que possam ser utilizados para auxiliar a compreensão de problemas e/ou na previsão de variáveis de natureza econômica. Com este propósito, escolheu-se um problema amplamente abordado na literatura e comparou-se os resultados teóricos e experimentais já consolidados com os obtidos utilizando a técnica proposta. Para tanto,foi construído um modelo para a classificação da tendência do "risco país" para o Brasil a partir de uma base de dados composta por variáveis macroeconômicas e financeiras. Como medida do risco adotou-se o EMBI+ (Emerging Markets Bond Index Plus), por ser um indicador amplamente utilizado pelo mercado.
Resumo:
Redes Bayesianas podem ser ferramentas poderosas para construção de modelos econômico-financeiros utilizados para auxílio à tomada de decisão em situações que envolvam grau elevado de incerteza. Relações não-lineares entre variáveis não são capturadas em modelos econométricos lineares. Especialmente em momentos de crise ou de ruptura, relações lineares, em geral, não mais representam boa aproximação da realidade, contribuindo para aumentar a distância entre os modelos teóricos de previsão e dados reais. Neste trabalho, é apresentada uma metodologia para levantamento de dados e aplicação de Redes Bayesianas na obtenção de modelos de crescimento de fluxos de caixa de empresas brasileiras. Os resultados são comparados a modelos econométricos de regressão múltipla e finalmente comparados aos dados reais observados no período. O trabalho é concluído avaliando-se as vantagens de desvantagens da utilização das Redes de Bayes para esta aplicação.
Resumo:
O objetivo deste trabalho foi mostrar modelagens alternativas à tradicional maneira de se apurar o risco de mercado para ativos financeiros brasileiros. Procurou-se cobrir o máximo possível de fatores de risco existentes no Brasil; para tanto utilizamos as principais proxies para instrumentos de Renda Fixa. Em momentos de volatilidade, o gerenciamento de risco de mercado é bastante criticado por trabalhar dentro de modelagens fundamentadas na distribuição normal. Aqui reside a maior contribuição do VaR e também a maior crítica a ele. Adicionado a isso, temos um mercado caracterizado pela extrema iliquidez no mercado secundário até mesmo em certos tipos de títulos públicos federais. O primeiro passo foi fazer um levantamento da produção acadêmica sobre o tema, seja no Brasil ou no mundo. Para a nossa surpresa, pouco, no nosso país, tem se falado em distribuições estáveis aplicadas ao mercado financeiro, seja em gerenciamento de risco, precificação de opções ou administração de carteiras. Após essa etapa, passamos a seleção das variáveis a serem utilizadas buscando cobrir uma grande parte dos ativos financeiros brasileiros. Assim, deveríamos identificar a presença ou não da condição de normalidade para, aí sim, realizarmos as modelagens das medidas de risco, VaR e ES, para os ativos escolhidos, As condições teóricas e práticas estavam criadas: demanda de mercado (crítica ao método gausiano bastante difundido), ampla cobertura de ativos (apesar do eventual questionamento da liquidez), experiência acadêmica e conhecimento internacional (por meio de detalhado e criterioso estudo da produção sobre o tema nos principais meios). Analisou-se, desta forma, quatro principais abordagens para o cálculo de medidas de risco sendo elas coerentes (ES) ou não (VaR). É importante mencionar que se trata de um trabalho que poderá servir de insumo inicial para trabalhos mais grandiosos, por exemplo, aqueles que incorporarem vários ativos dentro de uma carteira de riscos lineares ou, até mesmo, para ativos que apresentem risco não-direcionais.
Resumo:
Utilizando dados financeiros brasileiros do Ibovespa, testa-se a validade dos modelos de valor presente (MVP) no mercado de ações. Estes modelos relacionam o preço de uma ação ao seu fluxo de caixa futuro esperado (dividendos) trazido a valor presente utilizando uma taxa de desconto constante ou variante ao longo do tempo. Associada a estes modelos está a questão da previsibilidade dos retornos num contexto de expectativas racionais. Neste artigo é realizada uma análise multivariada num arcabouço de séries temporais utilizando a técnica de Autorregressões Vetoriais. Os resultados empíricos corroboram, em grande medida, o MVP para o Ibovespa brasileiro, pois há uma igualdade estatística entre a previsão ótima do mercado para o spread do equilíbrio de longo prazo e seus valores observados.
Resumo:
A identificação de modelos é determinante no sucesso das modernas técnicas de controle avançado de processos. Um modelo para o sistema pode ser obtido através de modelagem rigorosa, baseada em equações governantes do sistema ou através da modelagem empírica e estimação de parâmetros. Embora mais rápida e fácil, a modelagem empírica necessita de alguns testes de identificação nos quais as variáveis manipuladas são variadas de modo que resultem em variações nas variáveis controladas. Os testes de identificação podem apresentar custos muito elevados tendo em vista que o sistema pode sair de seu ponto normal de operação, gerando produtos com folga de especificação. Este fato ocorre porque usualmente as perturbações aplicadas nas variáveis manipuladas nas indústrias de processos são independentes umas das outras, aumentando a duração do teste de identificação. Desta forma, neste trabalho foi desenvolvida uma nova metodologia de projeto de perturbações simultâneas para a identificação de modelos dinâmicos baseada na direcionalidade do sistema, com o objetivo de fornecer dados mais ricos para se capturar corretamente o comportamento multivariável do sistema e manter o processo no ponto de operação normal. As perturbações são projetadas conforme as características de um modelo simplificado do processo, ou pré-modelo. Este modelo inicial é obtido essencialmente de dados históricos de planta, selecionados através de uma sistemática análise de correlação desenvolvida neste trabalho A metodologia proposta é composta de duas partes: a primeira parte diz respeito à análise dos dados históricos de planta para obtenção de informações prelimirares as quais são utilizadas no planejamento de perturbações, tais como amplitude do ruído de medida, correlação entre as variáveis de processo, constante de tempo do sistema e matriz de ganhos. E a segunda parte consiste no cálculo da amplitude das perturbações baseado nos resultados da primeira etapa do planejamento. Para sistemas mal-condicionados verificou-se que as perturbações planejadas pela metodologia removem menos a planta de seu ponto de operação gerando resultados mais consistentes em relação às perturbações tradicionais. Já para sistemas bem-condicionados, os resultados são semelhantes. A metodologia foi aplicada em uma unidade piloto experimental e numa unidade de destilação da PETROBRAS, cujos resultados apontam pouca remoção dos sistemas do ponto de operação e modelos consistentes. A validação dos modelos também foi contemplada na dissertação, uma vez que foi proposto um novo critério de validação que considera a derivada dos dados de planta e a do modelo e não apenas os dados de planta e os dados da simulação das saídas do modelo.
Resumo:
Com o objetivo de avaliar o uso do consumo de energia elétrica como indicador socioeconômico, esta pesquisa analisa informações em dois níveis de agregação geográfica. No primeiro, sob perspectiva territorial, investiga indicadores de Renda e Consumo de Energia Elétrica agregados por áreas de ponderação (conjunto de setores censitários) do município de São Paulo e utiliza os microdados do Censo Demográfico 2000 em conjunto com a base de domicílios da AES Eletropaulo. Aplica modelos de Spatial Auto-Regression (SAR), Geographically Weighted Regression (GWR), e um modelo inédito combinado (GWR+SAR), desenvolvido neste estudo. Diversas matrizes de vizinhança foram utilizadas na avaliação da influência espacial (com padrão Centro-Periferia) das variáveis em estudo. As variáveis mostraram forte auto-correlação espacial (I de Moran superior a 58% para o Consumo de Energia Elétrica e superior a 75% para a Renda Domiciliar). As relações entre Renda e Consumo de Energia Elétrica mostraram-se muito fortes (os coeficientes de explicação da Renda atingiram valores de 0,93 a 0,98). No segundo nível, domiciliar, utiliza dados coletados na Pesquisa Anual de Satisfação do Cliente Residencial, coordenada pela Associação Brasileira dos Distribuidores de Energia Elétrica (ABRADEE), para os anos de 2004, 2006, 2007, 2008 e 2009. Foram aplicados os modelos Weighted Linear Model (WLM), GWR e SAR para os dados das pesquisas com as entrevistas alocadas no centróide e na sede dos distritos. Para o ano de 2009, foram obtidas as localizações reais dos domicílios entrevistados. Adicionalmente, foram desenvolvidos 6 algoritmos de distribuição de pontos no interior dos polígonos dos distritos. Os resultados dos modelos baseados em centróides e sedes obtiveram um coeficiente de determinação R2 em torno de 0,45 para a técnica GWR, enquanto os modelos baseados no espalhamento de pontos no interior dos polígonos dos distritos reduziram essa explicação para cerca de 0,40. Esses resultados sugerem que os algoritmos de alocação de pontos em polígonos permitem a observação de uma associação mais realística entre os construtos analisados. O uso combinado dos achados demonstra que as informações de faturamento das distribuidoras de energia elétrica têm grande potencial para apoiar decisões estratégicas. Por serem atuais, disponíveis e de atualização mensal, os indicadores socioeconômicos baseados em consumo de energia elétrica podem ser de grande utilidade como subsídio a processos de classificação, concentração e previsão da renda domiciliar.
Resumo:
No estudo da propagação de uma doença infecciosa, diz-se que sua transmissão ocorre horizontalmente, quando um indivíduo suscetível tem um contato direto ou indireto com um indivíduo infeccioso. Algumas doenças, entretanto, também podem ser transmitidas verticalmente, entendendo-se que, neste caso, a doença é transmitida a um indivíduo, ao ser gerado por uma mãe infecciosa. Fazendo uso de modelos epidemiológicos determinísticos básicos, envolvendo sistemas de equações diferenciais ordinárias, nosso principal objetivo, neste trabalho, consiste em investigar qual o papel da transmissão vertical na propagação de doenças causadas por microparasitas. Diversas formas de inclusão de transmissão vertical são apresentadas e, em cada modelo estudado, investigamos a existência e a estabilidade local dos estados de equilíbrio da população hospedeira, identificamos os parâmetros e limiares que caracterizam a dinâmica do sistema, e completamos as informações decorrentes dos resultados analíticos com a apresentação de soluções numéricas do mesmo. Por fim, comparamos os efeitos da transmissão horizontal com aqueles decorrentes da transmissão vertical.