988 resultados para Mismatch repair


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adhesively-bonded composite patch repairs over cracked or corrosion-damaged metallic aircraft structures have shown great promise for extending life of ageing structures. This study presents the numerical investigation into the interface behaviour of adhesively-bonded cracked aluminum alloy substrate patched with fibre-reinforced composite material. The adhesive is modelled as an elasto-plastic bilinear material to characterise the debond behaviour, while the defective substrate is regarded as linear elastic continuum. Two typical patch shapes were selected based on information available in the literature. Geometric and material nonlinear analyses for square and octagonal patches were performed to capture peel and shear stresses developed between the substrate and the patch to examine the possibility of interface delamination/debonding. Parametric studies on adhesive thickness and patch thickness were carried out to predict their infuence on damage tolerance of repaired structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The overlapping sound pressure waves that enter our brain via the ears and auditory nerves must be organized into a coherent percept. Modelling the regularities of the auditory environment and detecting unexpected changes in these regularities, even in the absence of attention, is a necessary prerequisite for orientating towards significant information as well as speech perception and communication, for instance. The processing of auditory information, in particular the detection of changes in the regularities of the auditory input, gives rise to neural activity in the brain that is seen as a mismatch negativity (MMN) response of the event-related potential (ERP) recorded by electroencephalography (EEG). --- As the recording of MMN requires neither a subject s behavioural response nor attention towards the sounds, it can be done even with subjects with problems in communicating or difficulties in performing a discrimination task, for example, from aphasic and comatose patients, newborns, and even fetuses. Thus with MMN one can follow the evolution of central auditory processing from the very early, often critical stages of development, and also in subjects who cannot be examined with the more traditional behavioural measures of auditory discrimination. Indeed, recent studies show that central auditory processing, as indicated by MMN, is affected in different clinical populations, such as schizophrenics, as well as during normal aging and abnormal childhood development. Moreover, the processing of auditory information can be selectively impaired for certain auditory attributes (e.g., sound duration, frequency) and can also depend on the context of the sound changes (e.g., speech or non-speech). Although its advantages over behavioral measures are undeniable, a major obstacle to the larger-scale routine use of the MMN method, especially in clinical settings, is the relatively long duration of its measurement. Typically, approximately 15 minutes of recording time is needed for measuring the MMN for a single auditory attribute. Recording a complete central auditory processing profile consisting of several auditory attributes would thus require from one hour to several hours. In this research, I have contributed to the development of new fast multi-attribute MMN recording paradigms in which several types and magnitudes of sound changes are presented in both speech and non-speech contexts in order to obtain a comprehensive profile of auditory sensory memory and discrimination accuracy in a short measurement time (altogether approximately 15 min for 5 auditory attributes). The speed of the paradigms makes them highly attractive for clinical research, their reliability brings fidelity to longitudinal studies, and the language context is especially suitable for studies on language impairments such as dyslexia and aphasia. In addition I have presented an even more ecological paradigm, and more importantly, an interesting result in view of the theory of MMN where the MMN responses are recorded entirely without a repetitive standard tone. All in all, these paradigms contribute to the development of the theory of auditory perception, and increase the feasibility of MMN recordings in both basic and clinical research. Moreover, they have already proven useful in studying for instance dyslexia, Asperger syndrome and schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The silk gland of Bombyx mori is a terminally differentiated tissue in which DNA replication continues without cell or nuclear division during larval development. DNA polymerase-delta activity increases in the posterior and middle silk glands during the development period, reaching maximal levels in the middle of the fifth instar larvae. The enzyme has been purified to homogeneity by a series of column chromatographic and affinity purification steps. It is a multimer comprising of three heterogeneous subunits, M(r) 170,000, 70,000, and 42,000. An auxiliary protein from B. mori silk glands, analogous to the proliferating cell nuclear antigen, enhances the processivity of the enzyme and stimulates catalytic activity by 3-fold. This auxiliary protein has also been purified to homogeneity. It is a dimer comprised of a single type M(r) 40,000 subunit. Polymerase-delta possesses an intrinsic 3' --> 5' exonuclease activity which participates in proofreading by mismatch match repair during DNA synthesis and is devoid of any primase activity. DNA polymerase-delta activity could be further distinguished from polymerase-alpha from the same tissue based on its sensitivity to various inhibitors and polyclonal antibodies to the individual enzymes. Like DNA polymerase-alpha, polymerase-delta is also tightly associated with the nuclear matrix. The polymerase alpha-primase complex could be readily separated from polymerase-delta (exonuclease) in the purification protocol adopted. DNA polymerase-delta from B. mori silk glands resembles the mammalian delta-polymerases. Considering that both DNA polymerase-delta and -alpha are present in nearly equal amounts in this highly replicative tissue and their close association with the nuclear matrix, the involvement of both the enzymes in the chromosomal endoreplication process in B. mori is strongly implicated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heat shock protein 90 participates in diverse biological processes ranging from protein folding, cell cycle, signal transduction and development to evolution in all eukaryotes. It is also critically involved in regulating growth of protozoa such as Dictyostelium discoideum, Leishmania donovani, Plasmodium falciparum, Trypanosoma cruzi, and Trypanosoma evansi. Selective inhibition of Hsp90 has also been explored as an intervention strategy against important human diseases such as cancer, malaria, or trypanosomiasis. Giardia lamblia, a simple protozoan parasite of humans and animals, is an important cause of diarrheal disease with significant morbidity and some mortality in tropical countries. Here we show that the G. lamblia cytosolic hsp90 ( glhsp90) is split in two similar sized fragments located 777 kb apart on the same scaffold. Intrigued by this unique arrangement, which appears to be specific for the Giardiinae, we have investigated the biosynthesis of GlHsp90. We used genome sequencing to confirm the split nature of the giardial hsp90. However, a specific antibody raised against the peptide detected a product with a mass of about 80 kDa, suggesting a post-transcriptional rescue of the genomic defect. We show evidence for the joining of the two independent Hsp90 transcripts in-trans to one long mature mRNA presumably by RNA splicing. The splicing junction carries hallmarks of classical cis-spliced introns, suggesting that the regular cis-splicing machinery may be sufficient for repair of the open reading frame. A complementary 26-nt sequence in the ``intron'' regions adjacent to the splice sites may assist in positioning the two pre-mRNAs for processing. This is the first example of post-transcriptional rescue of a split gene by trans-splicing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uracil excision repair is ubiquitous in all domains of life and initiated by uracil DNA glycosylases (UDGs) which excise the promutagenic base, uracil, from DNA to leave behind an abasic site (AP-site). Repair of the resulting AP-sites requires an AP-endonuclease, a DNA polymerase, and a DNA ligase whose combined activities result in either short-patch or long-patch repair. Mycobacterium tuberculosis, the causative agent of tuberculosis, has an increased risk of accumulating uracils because of its G + C-rich genome, and its niche inside host macrophages where it is exposed to reactive nitrogen and oxygen species, two major causes of cytosine deamination (to uracil) in DNA. In vitro assays to study DNA repair in this important human pathogen are limited. To study uracil excision repair in mycobacteria, we have established assay conditions using cell-free extracts of M. tuberculosis and M. smegmatis (a fast-growing mycobacterium) and oligomer or plasmid DNA substrates. We show that in mycobacteria, uracil excision repair is completed primarily via long-patch repair. In addition, we show that M. tuberculosis UdgB, a newly characterized family 5 UDG, substitutes for the highly conserved family 1 UDG, Ung, thereby suggesting that UdgB might function as backup enzyme for uracil excision repair in mycobacteria. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integrity enhancement of damaged or design deficient structures through repairs is attracting considerable engineering attention. Bonded composite patch repairs to cracked metallic sheets offer various advantages over riveted doubler type, particularly for airframe applications. This paper first reviews the R&D activity in the area of structural repairs. It then approaches the problem of a composite patch repair to a cracked aluminium sheet with different finite element modelling strategies and compares their outcome. The efficient finite element modelling approach thus established is used to study the effect of patch material, patch size, patch symmetry and adhesive thickness on repair performance as the crack grows in the repair configuration. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A distributed storage setting is considered where a file of size B is to be stored across n storage nodes. A data collector should be able to reconstruct the entire data by downloading the symbols stored in any k nodes. When a node fails, it is replaced by a new node by downloading data from some of the existing nodes. The amount of download is termed as repair bandwidth. One way to implement such a system is to store one fragment of an (n, k) MDS code in each node, in which case the repair bandwidth is B. Since repair of a failed node consumes network bandwidth, codes reducing repair bandwidth are of great interest. Most of the recent work in this area focuses on reducing the repair bandwidth of a set of k nodes which store the data in uncoded form, while the reduction in the repair bandwidth of the remaining nodes is only marginal. In this paper, we present an explicit code which reduces the repair bandwidth for all the nodes to approximately B/2. To the best of our knowledge, this is the first explicit code which reduces the repair bandwidth of all the nodes for all feasible values of the system parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of minimizing the bandwidth required to repair a failed node when data is stored across n nodes in a distributed manner, so as to facilitate reconstruction of the entire data by connecting to any k out of the n nodes. We provide explicit and optimal constructions which permit exact replication of a failed systematic node.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methylated guanine damage at O6 position (i.e. O6MG) is dangerous due to its mutagenic and carcinogenic character that often gives rise to G:C-A:T mutation. However, the reason for this mutagenicity is not known precisely and has been a matter of controversy. Further, although it is known that O6-alkylguanine-DNA alkyltransferase (AGT) repairs O6MG paired with cytosine in DNA, the complete mechanism of target recognition and repair is not known completely. All these aspects of DNA damage and repair have been addressed here by employing high level density functional theory in gas phase and aqueous medium. It is found that the actual cause of O6MG mediated mutation may arise due to the fact that DNA polymerases incorporate thymine opposite to O6MG, misreading the resulting O6MG:T complex as an A:T base pair due to their analogous binding energies and structural alignments. It is further revealed that AGT mediated nucleotide flipping occurs in two successive steps. The intercalation of the finger residue Arg 128 into the DNA double helix and its interaction with the O6MG: C base pair followed by rotation of the O6MG nucleotide are found to be crucial for the damage recognition and nucleotide flipping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A distributed storage setting is considered where a file of size B is to be stored across n storage nodes. A data collector should be able to reconstruct the entire data by downloading the symbols stored in any k nodes. When a node fails, it is replaced by a new node by downloading data from some of the existing nodes. The amount of download is termed as repair bandwidth. One way to implement such a system is to store one fragment of an (n, k) MDS code in each node, in which case the repair bandwidth is B. Since repair of a failed node consumes network bandwidth, codes reducing repair bandwidth are of great interest. Most of the recent work in this area focuses on reducing the repair bandwidth of a set of k nodes which store the data in uncoded form, while the reduction in the repair bandwidth of the remaining nodes is only marginal. In this paper, we present an explicit code which reduces the repair bandwidth for all the nodes to approximately B/2. To the best of our knowledge, this is the first explicit code which reduces the repair bandwidth of all the nodes for all feasible values of the system parameters.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

About a third of the human population is estimated to be infected with Mycobacterium tuberculosis. The bacterium displays an excellent adaptability to survive within the host macrophages. As the reactive environment of macrophages is capable of inducing DNA damage, the ability of the pathogen to safeguard its DNA against the damage is of paramount significance for its survival within the host. Analysis of the genome sequence has provided important insights into the DNA repair machinery of the pathogen, and the studies on DNA repair in mycobacteria have gained momentum in the past few years. The studies have revealed considerable differences in the mycobacterial DNA repair machinery when compared with those of the other bacteria. This review article focuses especially on the aspects of base excision, and nucleotide excision repair pathways in mycobacteria. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RAD51C, a RAD51 paralog, has been implicated in homologous recombination (HR), and germ line mutations in RAD51C are known to cause Fanconi anemia (FA)-like disorder and breast and ovarian cancers. The role of RAD51C in the FA pathway of DNA interstrand cross-link (ICL) repair and as a tumor suppressor is obscure. Here, we report that RAD51C deficiency leads to ICL sensitivity, chromatid-type errors, and G(2)/M accumulation, which are hallmarks of the FA phenotype. We find that RAD51C is dispensable for ICL unhooking and FANCD2 monoubiquitination but is essential for HR, confirming the downstream role of RAD51C in ICL repair. Furthermore, we demonstrate that RAD51C plays a vital role in the HR-mediated repair of DNA lesions associated with replication. Finally, we show that RAD51C participates in ICL and double strand break-induced DNA damage signaling and controls intra-S-phase checkpoint through CHK2 activation. Our analyses with pathological mutants of RAD51C that were identified in FA and breast and ovarian cancers reveal that RAD51C regulates HR and DNA damage signaling distinctly. Together, these results unravel the critical role of RAD51C in the FA pathway of ICL repair and as a tumor suppressor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite-patching on cracked/weak metallic aircraft structures improves structural integrity. A Boron Epoxy patch employed to repair a cracked Aluminum sheet is modeled employing 3D Finite Element Method (FEM). SIFs extracted using ''displacement extrapolation'' are used to measure the repair effectiveness. Two issues viz., patch taper and symmetry have been looked into.