989 resultados para Mining policy
Resumo:
In spite of the wealth generation potential of the world's large metropolitan cities, poor living conditions for much of the world's urban population persist. Although the city has been widely studied, urban policy often remains ineffective. The paper adopts a policy process approach to analyze the relationship between knowledge and governmental action. Impediments to improving urban policy are found in the inadequate capacity of government to act and in the politics of democratic decision-making. The paper recommends that a pragmatic view of knowledge generation be adopted.
Resumo:
A gestão do conhecimento abrange toda a forma de gerar, armazenar, distribuir e utilizar o conhecimento, tornando necessária a utilização de tecnologias de informação para facilitar esse processo, devido ao grande aumento no volume de dados. A descoberta de conhecimento em banco de dados é uma metodologia que tenta solucionar esse problema e o data mining é uma técnica que faz parte dessa metodologia. Este artigo desenvolve, aplica e analisa uma ferramenta de data mining, para extrair conhecimento referente à produção científica das pessoas envolvidas com a pesquisa na Universidade Federal de Lavras. A metodologia utilizada envolveu a pesquisa bibliográfica, a pesquisa documental e o método do estudo de caso. As limitações encontradas na análise dos resultados indicam que ainda é preciso padronizar o modo do preenchimento dos currículos Lattes para refinar as análises e, com isso, estabelecer indicadores. A contribuição foi gerar um banco de dados estruturado, que faz parte de um processo maior de desenvolvimento de indicadores de ciência e tecnologia, para auxiliar na elaboração de novas políticas de gestão científica e tecnológica e aperfeiçoamento do sistema de ensino superior brasileiro.
Resumo:
Brazil has become the center of the spotlight of the whole world recently, amongst many other reasons, one of them was because it was chosen to host a series of mega sporting events - Pan American Games in 2007, Confederations Football Cup in 2013, Fifa Football World Cup 2014 Games and 2016 Olympic and Paralympic Games in 2016. However, little is known about the country's administrative governmental structure focused on sport policy. The available studies focus their analysis on the sport policies content, but not on the arrangement of its structural decision-making. The main aim of this article is indeed to describe, based on official documentation, the evolution and the current arrangements of the government responsible for the administrative structure for the planning and implementation of sports policies in Brazil. Thus, we tried to list the main problems arising from the organization of the Brazilian sports' management. These problems are: (1) inappropriate institutional structure in terms of human resources and obstacles to participation by other social actors beyond the officials (parliament and members of the Ministry of Sports) in the sports policy; (2) disarticulation between public institutions generating redundancies and conflicts of jurisdiction due to the poor division of labor between bureaucracy agencies; and (3) inadequate planning proved by the lack of organization of some institutions, and by the lack of assessment and continuity of public policies over time. Therefore, we must emphasize those problems from above, and due to these administrative arrangements, Brazilian sports' policy has big challenges in the sport development in this country, which includes the creation of a national "system" for sports and a priority investment in sport education.
Resumo:
A discussion of health policy in developing countries is presented. It argues that developing countries must adopt a progressive approach to health policy which rejects the two-tiered system of public and private health care. However, it also points out that ideology is not sufficient to maintain support. A progressive health system must utilize administrative and social and behavioral sciences to achieve effectiveness and efficiency in health care delivery. It cannot ignore these goals any more than a private health care system can.
Resumo:
A sample (n=124) of schizophrenic patients from a defined catchment area of the city os S.Paulo, Brazil, who had been consecutively admitted to hospital, was assessed for psychopathological status and social adjustment levels. Sociodemographic, socio-economic and occupational characteristics were recorded: almost 30% of the subjects had no occupation and received no social benefit, more than two-thirds had a monthly per capita income of US$ 100.00 or less. Sixty-five percent presented with Schneiderian firstrank symptoms. Nearly half the sample showed poor or very poor social adjustment in the month prior to admission. The most affected areas of social functioning were participation in the household activities, work and social withdrawal. The current mental health policy of promoting extra-mural care as an alternative to the previous hospital-based model will then mean the investment in a network of new community-based services, that give effective treatment and support to patients and their families. The need of further research into the current picture of mental disorders in the country is stressed.
Resumo:
Business Intelligence (BI) is one emergent area of the Decision Support Systems (DSS) discipline. Over the last years, the evolution in this area has been considerable. Similarly, in the last years, there has been a huge growth and consolidation of the Data Mining (DM) field. DM is being used with success in BI systems, but a truly DM integration with BI is lacking. Therefore, a lack of an effective usage of DM in BI can be found in some BI systems. An architecture that pretends to conduct to an effective usage of DM in BI is presented.
Resumo:
This paper deals with the establishment of a characterization methodology of electric power profiles of medium voltage (MV) consumers. The characterization is supported on the data base knowledge discovery process (KDD). Data Mining techniques are used with the purpose of obtaining typical load profiles of MV customers and specific knowledge of their customers’ consumption habits. In order to form the different customers’ classes and to find a set of representative consumption patterns, a hierarchical clustering algorithm and a clustering ensemble combination approach (WEACS) are used. Taking into account the typical consumption profile of the class to which the customers belong, new tariff options were defined and new energy coefficients prices were proposed. Finally, and with the results obtained, the consequences that these will have in the interaction between customer and electric power suppliers are analyzed.
Resumo:
The introduction of Electric Vehicles (EVs) together with the implementation of smart grids will raise new challenges to power system operators. This paper proposes a demand response program for electric vehicle users which provides the network operator with another useful resource that consists in reducing vehicles charging necessities. This demand response program enables vehicle users to get some profit by agreeing to reduce their travel necessities and minimum battery level requirements on a given period. To support network operator actions, the amount of demand response usage can be estimated using data mining techniques applied to a database containing a large set of operation scenarios. The paper includes a case study based on simulated operation scenarios that consider different operation conditions, e.g. available renewable generation, and considering a diversity of distributed resources and electric vehicles with vehicle-to-grid capacity and demand response capacity in a 33 bus distribution network.
Resumo:
This paper describes a methodology that was developed for the classification of Medium Voltage (MV) electricity customers. Starting from a sample of data bases, resulting from a monitoring campaign, Data Mining (DM) techniques are used in order to discover a set of a MV consumer typical load profile and, therefore, to extract knowledge regarding to the electric energy consumption patterns. In first stage, it was applied several hierarchical clustering algorithms and compared the clustering performance among them using adequacy measures. In second stage, a classification model was developed in order to allow classifying new consumers in one of the obtained clusters that had resulted from the previously process. Finally, the interpretation of the discovered knowledge are presented and discussed.
Resumo:
In recent years, Power Systems (PS) have experimented many changes in their operation. The introduction of new players managing Distributed Generation (DG) units, and the existence of new Demand Response (DR) programs make the control of the system a more complex problem and allow a more flexible management. An intelligent resource management in the context of smart grids is of huge important so that smart grids functions are assured. This paper proposes a new methodology to support system operators and/or Virtual Power Players (VPPs) to determine effective and efficient DR programs that can be put into practice. This method is based on the use of data mining techniques applied to a database which is obtained for a large set of operation scenarios. The paper includes a case study based on 27,000 scenarios considering a diversity of distributed resources in a 32 bus distribution network.
Resumo:
In many countries the use of renewable energy is increasing due to the introduction of new energy and environmental policies. Thus, the focus on the efficient integration of renewable energy into electric power systems is becoming extremely important. Several European countries have already achieved high penetration of wind based electricity generation and are gradually evolving towards intensive use of this generation technology. The introduction of wind based generation in power systems poses new challenges for the power system operators. This is mainly due to the variability and uncertainty in weather conditions and, consequently, in the wind based generation. In order to deal with this uncertainty and to improve the power system efficiency, adequate wind forecasting tools must be used. This paper proposes a data-mining-based methodology for very short-term wind forecasting, which is suitable to deal with large real databases. The paper includes a case study based on a real database regarding the last three years of wind speed, and results for wind speed forecasting at 5 minutes intervals.
Resumo:
In recent decades, all over the world, competition in the electric power sector has deeply changed the way this sector’s agents play their roles. In most countries, electric process deregulation was conducted in stages, beginning with the clients of higher voltage levels and with larger electricity consumption, and later extended to all electrical consumers. The sector liberalization and the operation of competitive electricity markets were expected to lower prices and improve quality of service, leading to greater consumer satisfaction. Transmission and distribution remain noncompetitive business areas, due to the large infrastructure investments required. However, the industry has yet to clearly establish the best business model for transmission in a competitive environment. After generation, the electricity needs to be delivered to the electrical system nodes where demand requires it, taking into consideration transmission constraints and electrical losses. If the amount of power flowing through a certain line is close to or surpasses the safety limits, then cheap but distant generation might have to be replaced by more expensive closer generation to reduce the exceeded power flows. In a congested area, the optimal price of electricity rises to the marginal cost of the local generation or to the level needed to ration demand to the amount of available electricity. Even without congestion, some power will be lost in the transmission system through heat dissipation, so prices reflect that it is more expensive to supply electricity at the far end of a heavily loaded line than close to an electric power generation. Locational marginal pricing (LMP), resulting from bidding competition, represents electrical and economical values at nodes or in areas that may provide economical indicator signals to the market agents. This article proposes a data-mining-based methodology that helps characterize zonal prices in real power transmission networks. To test our methodology, we used an LMP database from the California Independent System Operator for 2009 to identify economical zones. (CAISO is a nonprofit public benefit corporation charged with operating the majority of California’s high-voltage wholesale power grid.) To group the buses into typical classes that represent a set of buses with the approximate LMP value, we used two-step and k-means clustering algorithms. By analyzing the various LMP components, our goal was to extract knowledge to support the ISO in investment and network-expansion planning.
Resumo:
This paper presents a methodology supported on the data base knowledge discovery process (KDD), in order to find out the failure probability of electrical equipments’, which belong to a real electrical high voltage network. Data Mining (DM) techniques are used to discover a set of outcome failure probability and, therefore, to extract knowledge concerning to the unavailability of the electrical equipments such us power transformers and high-voltages power lines. The framework includes several steps, following the analysis of the real data base, the pre-processing data, the application of DM algorithms, and finally, the interpretation of the discovered knowledge. To validate the proposed methodology, a case study which includes real databases is used. This data have a heavy uncertainty due to climate conditions for this reason it was used fuzzy logic to determine the set of the electrical components failure probabilities in order to reestablish the service. The results reflect an interesting potential of this approach and encourage further research on the topic.
Resumo:
Presently power system operation produces huge volumes of data that is still treated in a very limited way. Knowledge discovery and machine learning can make use of these data resulting in relevant knowledge with very positive impact. In the context of competitive electricity markets these data is of even higher value making clear the trend to make data mining techniques application in power systems more relevant. This paper presents two cases based on real data, showing the importance of the use of data mining for supporting demand response and for supporting player strategic behavior.