984 resultados para Mining extraction
Resumo:
An enhanced mill extraction model has been developed to calculate mill performance parameters and to predict the extraction performance of a milling unit. The model takes into account the fibre suspended in juice streams and calculates filling ratio, reabsorption factor, imbibition coefficient, and separation efficiency using more complete definitions than those used in previous extraction models. A mass balance model is used to determine the fibre, brix and moisture mass flows between milling units so that a complete milling train, including the return stream from the juice screen, is modelled. Model solutions are presented to determine the effect of different levels of fibre in juice and efficiency of fibre separation in the juice screen on brix extraction. The model provides more accurate results than earlier models leading to better understanding and improvement of the milling process.
Resumo:
While changes in work and employment practices in the mining sector have been profound, the literature addressing mining work is somewhat partial as it focuses primarily on the workplace as the key (or only) site of analysis, leaving the relationship between mining work and families and communities under-theorized. This article adopts a spatially oriented, case-study approach to the sudden closure of the Ravensthorpe nickel mine in the south-west of Western Australia to explore the interplay between the new scales and mobilities of labour and capital and work–family–community connections in mining. In the context of the dramatically reconfigured industrial arena of mining work, the study contributes to a theoretical engagement between employment relations and the spatial dimensions of family and community in resource-affected communities.
Resumo:
The quality of discovered features in relevance feedback (RF) is the key issue for effective search query. Most existing feedback methods do not carefully address the issue of selecting features for noise reduction. As a result, extracted noisy features can easily contribute to undesirable effectiveness. In this paper, we propose a novel feature extraction method for query formulation. This method first extract term association patterns in RF as knowledge for feature extraction. Negative RF is then used to improve the quality of the discovered knowledge. A novel information filtering (IF) model is developed to evaluate the proposed method. The experimental results conducted on Reuters Corpus Volume 1 and TREC topics confirm that the proposed model achieved encouraging performance compared to state-of-the-art IF models.
Resumo:
It is a big challenge to clearly identify the boundary between positive and negative streams. Several attempts have used negative feedback to solve this challenge; however, there are two issues for using negative relevance feedback to improve the effectiveness of information filtering. The first one is how to select constructive negative samples in order to reduce the space of negative documents. The second issue is how to decide noisy extracted features that should be updated based on the selected negative samples. This paper proposes a pattern mining based approach to select some offenders from the negative documents, where an offender can be used to reduce the side effects of noisy features. It also classifies extracted features (i.e., terms) into three categories: positive specific terms, general terms, and negative specific terms. In this way, multiple revising strategies can be used to update extracted features. An iterative learning algorithm is also proposed to implement this approach on RCV1, and substantial experiments show that the proposed approach achieves encouraging performance.
Resumo:
Data mining techniques extract repeated and useful patterns from a large data set that in turn are utilized to predict the outcome of future events. The main purpose of the research presented in this paper is to investigate data mining strategies and develop an efficient framework for multi-attribute project information analysis to predict the performance of construction projects. The research team first reviewed existing data mining algorithms, applied them to systematically analyze a large project data set collected by the survey, and finally proposed a data-mining-based decision support framework for project performance prediction. To evaluate the potential of the framework, a case study was conducted using data collected from 139 capital projects and analyzed the relationship between use of information technology and project cost performance. The study results showed that the proposed framework has potential to promote fast, easy to use, interpretable, and accurate project data analysis.
Resumo:
Automated feature extraction and correspondence determination is an extremely important problem in the face recognition community as it often forms the foundation of the normalisation and database construction phases of many recognition and verification systems. This paper presents a completely automatic feature extraction system based upon a modified volume descriptor. These features form a stable descriptor for faces and are utilised in a reversible jump Markov chain Monte Carlo correspondence algorithm to automatically determine correspondences which exist between faces. The developed system is invariant to changes in pose and occlusion and results indicate that it is also robust to minor face deformations which may be present with variations in expression.
Resumo:
Decision table and decision rules play an important role in rough set based data analysis, which compress databases into granules and describe the associations between granules. Granule mining was also proposed to interpret decision rules in terms of association rules and multi-tier structure. In this paper, we further extend granule mining to describe the relationships between granules not only by traditional support and confidence, but by diversity and condition diversity as well. Diversity measures how diverse of a granule associated with the other ganules, it provides a kind of novel knowledge in databases. Some experiments are conducted to test the proposed new concepts for describing the characteristics of a real network traffic data collection. The results show that the proposed concepts are promising.
Resumo:
The research team recognized the value of network-level Falling Weight Deflectometer (FWD) testing to evaluate the structural condition trends of flexible pavements. However, practical limitations due to the cost of testing, traffic control and safety concerns and the ability to test a large network may discourage some agencies from conducting the network-level FWD testing. For this reason, the surrogate measure of the Structural Condition Index (SCI) is suggested for use. The main purpose of the research presented in this paper is to investigate data mining strategies and to develop a prediction method of the structural condition trends for network-level applications which does not require FWD testing. The research team first evaluated the existing and historical pavement condition, distress, ride, traffic and other data attributes in the Texas Department of Transportation (TxDOT) Pavement Maintenance Information System (PMIS), applied data mining strategies to the data, discovered useful patterns and knowledge for SCI value prediction, and finally provided a reasonable measure of pavement structural condition which is correlated to the SCI. To evaluate the performance of the developed prediction approach, a case study was conducted using the SCI data calculated from the FWD data collected on flexible pavements over a 5-year period (2005 – 09) from 354 PMIS sections representing 37 pavement sections on the Texas highway system. The preliminary study results showed that the proposed approach can be used as a supportive pavement structural index in the event when FWD deflection data is not available and help pavement managers identify the timing and appropriate treatment level of preventive maintenance activities.
Resumo:
In this paper a real-time vision based power line extraction solution is investigated for active UAV guidance. The line extraction algorithm starts from ridge points detected by steerable filters. A collinear line segments fitting algorithm is followed up by considering global and local information together with multiple collinear measurements. GPU boosted algorithm implementation is also investigated in the experiment. The experimental result shows that the proposed algorithm outperforms two baseline line detection algorithms and is able to fitting long collinear line segments. The low computational cost of the algorithm make suitable for real-time applications.
Resumo:
Key decisions at the collection, pre-processing, transformation, mining and interpretation phase of any knowledge discovery from database (KDD) process depend heavily on assumptions and theorectical perspectives relating to the type of task to be performed and characteristics of data sourced. In this article, we compare and contrast theoretical perspectives and assumptions taken in data mining exercises in the legal domain with those adopted in data mining in TCM and allopathic medicine. The juxtaposition results in insights for the application of KDD for Traditional Chinese Medicine.
Resumo:
Each year, organizations in Australian mining industry (asset intensive industry) spend substantial amount of capital (A$86 billion in 2009-10) (Statistics, 2011) in acquiring engineering assets. Engineering assets are put to use in operations to generate value. Different functions (departments) of an organization have different expectations and requirements from each of the engineering asset e.g. return on investment, reliability, efficiency, maintainability, low cost of running the asset, low or nil environmental impact and easy of disposal, potential salvage value etc. Assets are acquired from suppliers or built by service providers and or internally. The process of acquiring assets is supported by procurement function. One of the most costly mistakes that organizations can make is acquiring the inappropriate or non-conforming assets that do not fit the purpose. The root cause of acquiring non confirming assets belongs to incorrect acquisition decision and the process of making decisions. It is very important that an asset acquisition decision is based on inputs and multi-criteria of each function within the organization which has direct or indirect impact on the acquisition, utilization, maintenance and disposal of the asset. Literature review shows that currently there is no comprehensive process framework and tool available to evaluate the inclusiveness and breadth of asset acquisition decisions that are taken in the Mining Organizations. This thesis discusses various such criteria and inputs that need to be considered and evaluated from various functions within the organization while making the asset acquisition decision. Criteria from functions such as finance, production, maintenance, logistics, procurement, asset management, environment health and safety, material management, training and development etc. need to be considered to make an effective and coherent asset acquisition decision. The thesis also discusses a tool that is developed to be used in the multi-criteria and cross functional acquisition decision making. The development of multi-criteria and cross functional inputs based decision framework and tool which utilizes that framework to formulate cross functional and integrated asset acquisition decisions are the contribution of this research.
Resumo:
The sky is falling because the much-vaunted mining ‘boom’ is heading for ‘bust’. The fear-mongering by politicians, the industry and the media has begun in earnest. On ABC TV's 7:30 program on 22 August 2012, Federal Opposition Leader Tony Abbott blamed the Minerals Resource Rent Tax and the Carbon Tax for making ‘a bad investment environment much, much worse’ for the mining industry. The following day, Australia's Resources and Energy Minister Martin Ferguson told us on ABC radio that ‘the resources boom is over’. This must be true because, remember, we were warned to ‘Get ready for the end of the boom’ (David Uren, Economics Editor for The Australian 19 May 2012) due to the ‘Australian resource boom losing steam’ (David Winning & Robb M. Stewart, Wall Street Journal 21 August 2012). Besides, there is ‘unarguable evidence’ that Australia's production costs are ‘too expensive’ and ‘too uncompetitive’: mining magnate Gina Rinehart said so in a YouTube video placed on the Sydney Mining Club's website on 5 September 2012. Can this really be so? What is happening to the mining boom and to the people who depend upon it?