950 resultados para Microbial enzymes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Restriction endonucleases interact with DNA at specific sites leading to cleavage of DNA. Bacterial DNA is protected from restriction endonuclease cleavage by modifying the DNA using a DNA methyltransferase. Based on their molecular structure, sequence recognition, cleavage position and cofactor requirements, restriction-modification (R-M) systems are classified into four groups. Type III R-M enzymes need to interact with two separate unmethylated DNA sequences in inversely repeated head-to-head orientations for efficient cleavage to occur at a defined location (25-27 bp downstream of one of the recognition sites). Like the Type I R-M enzymes, Type III R-M enzymes possess a sequence-specific ATPase activity for DNA cleavage. ATP hydrolysis is required for the long-distance communication between the sites before cleavage. Different models, based on 1D diffusion and/or 3D-DNA looping, exist to explain how the long-distance interaction between the two recognition sites takes place. Type III R-M systems are found in most sequenced bacteria. Genome sequencing of many pathogenic bacteria also shows the presence of a number of phase-variable Type III R-M systems, which play a role in virulence. A growing number of these enzymes are being subjected to biochemical and genetic studies, which, when combined with ongoing structural analyses, promise to provide details for mechanisms of DNA recognition and catalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenylosuccinate lyase (ASL), an enzyme involved in purine biosynthesis, has been recognized as a drug target against microbial infections. In the present study, ASL from Mycobacteriumsmegmatis (MsASL) and Mycobacteriumtuberculosis (MtbASL) were cloned, purified and crystallized. The X-ray crystal structure of MsASL was determined at a resolution of 2.16 angstrom. It is the first report of an apo-ASL structure with a partially ordered active site C3 loop. Diffracting crystals of MtbASL could not be obtained and a model for its structure was derived using MsASL as a template. These structures suggest that His149 and either Lys285 or Ser279 of MsASL are the residues most likely to function as the catalytic acid and base, respectively. Most of the active site residues were found to be conserved, with the exception of Ser148 and Gly319 of MsASL. Ser148 is structurally equivalent to a threonine in most other ASLs. Gly319 is replaced by an arginine residue in most ASLs. The two enzymes were catalytically much less active compared to ASLs from other organisms. Arg319Gly substitution and reduced flexibility of the C3 loop might account for the low catalytic activity of mycobacterial ASLs. The low activity is consistent with the slow growth rate of Mycobacteria and their high GC containing genomes, as well as their dependence on other salvage pathways for the supply of purine nucleotides. Structured digital abstract andby()

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enzymes utilizing pyridoxal 5'-phosphate dependent mechanism for catalysis are observed in all cellular forms of living organisms. PLP-dependent enzymes catalyze a wide variety of reactions involving amino acid substrates and their analogs. Structurally, these ubiquitous enzymes have been classified into four major fold types. We have carried out investigations on the structure and function of fold type I enzymes serine hydroxymethyl transferase and acetylornithine amino transferase, fold type n enzymes catabolic threonine deaminase, D-serine deaminase, D-cysteine desulfhydrase and diaminopropionate ammonia lyase. This review summarizes the major findings of investigations on fold type II enzymes in the context of similar studies on other PLP-dependent enzymes. Fold type II enzymes participate in pathways of both degradation and synthesis of amino acids. Polypeptide folds of these enzymes, features of their active sites, nature of interactions between the cofactor and the polypeptide, oligomeric structure, catalytic activities with various ligands, origin of specificity and plausible regulation of activity are briefly described. Analysis of the available crystal structures of fold type II enzymes revealed five different classes. The dimeric interfaces found in these enzymes vary across the classes and probably have functional significance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While considered as sustainable and low-cost agricultural amendments, the impacts of organic fertilizers on downstream aquatic microbial communities remain poorly documented. We investigated the quantity and quality of the dissolved organic matter leaching from agricultural soil amended with compost, vermicompost or biochar and assessed their effects on lake microbial communities, in terms of viral and bacterial abundances, community structure and metabolic potential. The addition of compost and vermicompost significantly increased the amount of dissolved organic carbon in the leachate compared with soil alone. Leachates from these additions, either with or without biochar, were highly bioavailable to aquatic microbial communities, although reducing the metabolic potential of the community and harbouring more specific communities. Although not affecting bacterial richness or taxonomic distributions, the specific addition of biochar affected the original lake bacterial communities, resulting in a strongly different community. This could be partly explained by viral burst and converging bacterial abundances throughout the samples. These results underline the necessity to include off-site impacts of agricultural amendments when considering their cascading effect on downstream aquatic ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many organisms ``Universal Stress Proteins'' CUSPS) are induced in response to a variety of environmental stresses. Here we report the structures of two USPs, YnaF and YdaA from Salmonella typhimurium determined at 1.8 angstrom and 2.4 angstrom resolutions, respectively. YnaF consists of a single USP domain and forms a tetrameric organization stabilized by interactions mediated through chloride ions. YdaA is a larger protein consisting of two tandem USP domains. Two protomers of YdaA associate to form a structure similar to the YnaF tetramer. YdaA showed ATPase activity and an ATP binding motif G-2X-G-9X-G(S/T/N) was found in its C-terminal domain. The residues corresponding to this motif were not conserved in YnaF although YnaF could bind ATP. However, unlike YdaA, YnaF did not hydrolyse ATP in vitro. Disruption of interactions mediated through chloride ions by selected mutations converted YnaF into an ATPase. Residues that might be important for ATP hydrolysis could be identified by comparing the active sites of native and mutant structures. Only the C-terminal domain of YdaA appears to be involved in ATP hydrolysis. The structurally similar N-terminal domain was found to bind a zinc ion near the segment equivalent to the phosphate binding loop of the C-terminal domain. Mass spectrometric analysis showed that YdaA might bind a ligand of approximate molecular weight 800 daltons. Structural comparisons suggest that the ligand, probably related to an intermediate in lipid A biosynthesis, might bind at a site close to the zinc ion. Therefore, the N-terminal domain of YdaA binds zinc and might play a role in lipid metabolism. Thus, USPs appear to perform several distinct functions such as ATP hydrolysis, altering membrane properties and chloride sensing. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrodeposition was used for synthesizing 200 nm diameter Fe3O4-Ag nanotubes. Compositional analysis at the single nanotube level revealed a fairly uniform distribution of component elements in the nanotube microstructure. As-synthesized Fe3O4-Ag nanotubes were superparamagnetic in nature. Electron diffraction revealed the ultrafine nanocrystalline microstructure of the nanotubes. The effect of Ag on the anti-microbial response of the nanotubes was investigated by comparing the effect of sulphate reducing bacteria (SRB) on Fe3O4-Ag and Fe3O4 nanotubes. Fe3O4 nanotubes were also electro-deposited in the present study. It was observed that the Fe3O4-Ag nanotubes exhibited good resistance to sulphate reducing bacteria which revealed the anti-microbial nature of the Fe3O4-Ag nanotubes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a quantum dot based DNA nanosensor specifically targeting the cleavage step in the reaction cycle of the essential DNA-modifying enzyme, mycobacterial topoisomerase I. The design takes advantages of the unique photophysical properties of quantum dots to generate visible fluorescence recovery upon specific cleavage by mycobacterial topoisomerase I. This report, for the first time, demonstrates the possibility to quantify the cleavage activity of the mycobacterial enzyme without the pre-processing sample purification or post-processing signal amplification. The cleavage induced signal response has also proven reliable in biological matrices, such as whole cell extracts prepared from Escherichia coli and human Caco-2 cells. It is expected that the assay may contribute to the clinical diagnostics of bacterial diseases, as well as the evaluation of treatment outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Healthy human skin harbours a diverse array of microbes that comprise the skin microbiome. Commensal bacteria constitute an important component of resident microbiome and are intricately linked to skin health. Recent studies describe an association between altered skin microbial community and epidemiology of diseases, like psoriasis, atopic dermatitis etc. In this study, we compare the differences in bacterial community of lesional and non-lesional skin of vitiligo subjects. Our study reveals dysbiosis in the diversity of microbial community structure in lesional skin of vitiligo subjects. Although individual specific signature is dominant over the vitiligo-specific microbiota, a clear decrease in taxonomic richness and evenness can be noted in lesional patches. Investigation of community specific correlation networks reveals distinctive pattern of interactions between resident bacterial populations of the two sites (lesional and non-lesional). While Actinobacterial species constitute the central regulatory nodes (w.r.t. degree of interaction) in non-lesional skin, species belonging to Firmicutes dominate on lesional sites. We propose that the changes in taxonomic characteristics of vitiligo lesions, as revealed by our study, could play a crucial role in altering the maintenance and severity of disease. Future studies would elucidate mechanistic relevance of these microbial dynamics that can provide new avenues for therapeutic interventions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anti-corrosive and anti-bacterial properties of electrodeposited nanocrystalline Ni-Ag coatings are illustrated. Pure Ni, Ni-7 at.% Ag, & Ni-14 at.% Ag coatings were electrodeposited on Cu substrate. Coating consisted of Ni-rich and Ag-rich solid solution phases. With increase in the Ag content, the corrosion resistance of the Ni-Ag coating initially increased and then decreased. The initial increase was due to the Ni-Ag solid solution. The subsequent decrease was due to the increased galvanic coupling between the Ag-rich and Ni-rich phases. For all Ag contents, the corrosion resistance of the Ni-Ag coating was higher than the pure Ni coating. Exposure to Sulphate Reducing Bacteria (SRB) revealed that the extent of bio-fouling decreased with increase in the Ag content. After 2 month exposure to SRB, the Ni-Ag coatings demonstrated less loss in corrosion resistance (58% for Ni-7 at.% Ag and 20% for Ni-14 at.% Ag) when compared pure Ni coating (115%). (C) 2016 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anti-corrosive and anti-bacterial properties of electrodeposited nanocrystalline Ni-Ag coatings are illustrated. Pure Ni, Ni-7 at.% Ag, & Ni-14 at.% Ag coatings were electrodeposited on Cu substrate. Coating consisted of Ni-rich and Ag-rich solid solution phases. With increase in the Ag content, the corrosion resistance of the Ni-Ag coating initially increased and then decreased. The initial increase was due to the Ni-Ag solid solution. The subsequent decrease was due to the increased galvanic coupling between the Ag-rich and Ni-rich phases. For all Ag contents, the corrosion resistance of the Ni-Ag coating was higher than the pure Ni coating. Exposure to Sulphate Reducing Bacteria (SRB) revealed that the extent of bio-fouling decreased with increase in the Ag content. After 2 month exposure to SRB, the Ni-Ag coatings demonstrated less loss in corrosion resistance (58% for Ni-7 at.% Ag and 20% for Ni-14 at.% Ag) when compared pure Ni coating (115%). (C) 2016 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, silver nanoparticles (AgNPs) have attracted considerable interest in the field of food, agriculture and pharmaceuticals mainly due to its antibacterial activity. AgNPs have also been reported to possess toxic behavior. The toxicological behavior of nanomaterials largely depends on its size and shape which ultimately depend on synthetic protocol. A systematic and detailed analysis for size variation of AgNP by thermal co-reduction approach and its efficacy toward microbial and cellular toxicological behavior is presented here. With the focus to explore the size-dependent toxicological variation, two different-sized NPs have been synthesized, i.e., 60 nm (Ag60) and 85 nm (Ag85). A detailed microbial toxicological evaluation has been performed by analyzing minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), diameter of inhibition zone (DIZ), growth kinetics (GrK), and death kinetics (DeK). Comparative cytotoxicological behavior was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. It has been concluded by this study that the size of AgNPs can be varied, by varying the concentration of reactants and temperature called as ``thermal co-reduction'' approach, which is one of the suitable approaches to meet the same. Also, the smaller AgNP has shown more microbial and cellular toxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El presente estudio se llevó a cabo desde Julio de 1996 a Marzo de 1997, con el objetivo de determinar el efecto de las aplicaciones de Beauveria bassíana (Bals) vuill y Metarhízíum anisopliae (Metsch) sorokin en diferentes momentos sobre la dinámica poblacional de picudo negro, Cosmopolites sordídus (Germar 1824) dichos hongos fueron aplicados en suspención acuosa y en trampas de pseudotallos de plátano, variedad "Cuerno". Los tratamientos evaluados fueron: 1) aplicación de Beauveria bassiana:. 2) aplicación con Metarhizium anisopliae: 3) Trampas+ aplicación de B. bassiana: 4) trampas+ aplicación de M. anisopliae: 5) Control físico. Eliminación manual de las poblaciones de adultos de picudo capturado por medio de trampas. 6) Testigo. No se realizó ningún tipo de control especial. En los resultados obtenidos se determinó que no hay diferencias estadísticas significativas entra los tratamientos aplicados Al mismo tiempo se determinó que los tratamientos evaluados no redujeron el número de picudo negro y el nivel de daño presente en la plantación. Se logró determinar que la plantación esta siendo afectada por C. Sordidus asociado con nemátodos ; los que debilitan la planta provocando mayor caída de las misma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considerations to introduce the Suminoe or Asian oyster Crassostrea ariakensis along the East Coast have raised many questions regarding ecology, economics, and human health. To date, research has focused primarily on the ecological and socioeconomic implications of this initiative, yet few studies have assessed its potential impact on public health. Our work compares the rates of bioaccumulation, depuration and post harvest decay of indicator organisms (such as E. coli) and Vibrio sp. between Crassostrea virginica and Crassostrea ariakensis in the laboratory. Preliminary results suggest that the rates of bioaccumulation of E. coli in Crassostrea ariakensis were significantly lower than those for Crassostrea virginica, depuration of E. coli was variable between the two species, and Crassostrea ariakensis post harvest decay rates of Vibrio sp. were significantly lower than Crassostrea virginica. This research provides coastal managers with insight into the response of Crassostrea ariakensis to bacteria, an important consideration for determining appropriate management strategies for this species. Further field-based studies will be necessary to elucidate the mechanisms responsible for the differences in rates of bioaccumulation and depuration. (PDF contains 40 pages)