950 resultados para Microarray-based genomic hybridization


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The genotyping of human papillomaviruses (HPV) is essential for the surveillance of HPV vaccines. We describe and validate a low-cost PGMY-based PCR assay (PGMY-CHUV) for the genotyping of 31 HPV by reverse blotting hybridization (RBH). Genotype-specific detection limits were 50 to 500 genome equivalents per reaction. RBH was 100% specific and 98.61% sensitive using DNA sequencing as the gold standard (n = 1,024 samples). PGMY-CHUV was compared to the validated and commercially available linear array (Roche) on 200 samples. Both assays identified the same positive (n = 182) and negative samples (n = 18). Seventy-six percent of the positives were fully concordant after restricting the comparison to the 28 genotypes shared by both assays. At the genotypic level, agreement was 83% (285/344 genotype-sample combinations; κ of 0.987 for single infections and 0.853 for multiple infections). Fifty-seven of the 59 discordant cases were associated with multiple infections and with the weakest genotypes within each sample (P < 0.0001). PGMY-CHUV was significantly more sensitive for HPV56 (P = 0.0026) and could unambiguously identify HPV52 in mixed infections. PGMY-CHUV was reproducible on repeat testing (n = 275 samples; 392 genotype-sample combinations; κ of 0.933) involving different reagents lots and different technicians. Discordant results (n = 47) were significantly associated with the weakest genotypes in samples with multiple infections (P < 0.0001). Successful participation in proficiency testing also supported the robustness of this assay. The PGMY-CHUV reagent costs were estimated at $2.40 per sample using the least expensive yet proficient genotyping algorithm that also included quality control. This assay may be used in low-resource laboratories that have sufficient manpower and PCR expertise.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Résumé: L'automatisation du séquençage et de l'annotation des génomes, ainsi que l'application à large échelle de méthodes de mesure de l'expression génique, génèrent une quantité phénoménale de données pour des organismes modèles tels que l'homme ou la souris. Dans ce déluge de données, il devient très difficile d'obtenir des informations spécifiques à un organisme ou à un gène, et une telle recherche aboutit fréquemment à des réponses fragmentées, voir incomplètes. La création d'une base de données capable de gérer et d'intégrer aussi bien les données génomiques que les données transcriptomiques peut grandement améliorer la vitesse de recherche ainsi que la qualité des résultats obtenus, en permettant une comparaison directe de mesures d'expression des gènes provenant d'expériences réalisées grâce à des techniques différentes. L'objectif principal de ce projet, appelé CleanEx, est de fournir un accès direct aux données d'expression publiques par le biais de noms de gènes officiels, et de représenter des données d'expression produites selon des protocoles différents de manière à faciliter une analyse générale et une comparaison entre plusieurs jeux de données. Une mise à jour cohérente et régulière de la nomenclature des gènes est assurée en associant chaque expérience d'expression de gène à un identificateur permanent de la séquence-cible, donnant une description physique de la population d'ARN visée par l'expérience. Ces identificateurs sont ensuite associés à intervalles réguliers aux catalogues, en constante évolution, des gènes d'organismes modèles. Cette procédure automatique de traçage se fonde en partie sur des ressources externes d'information génomique, telles que UniGene et RefSeq. La partie centrale de CleanEx consiste en un index de gènes établi de manière hebdomadaire et qui contient les liens à toutes les données publiques d'expression déjà incorporées au système. En outre, la base de données des séquences-cible fournit un lien sur le gène correspondant ainsi qu'un contrôle de qualité de ce lien pour différents types de ressources expérimentales, telles que des clones ou des sondes Affymetrix. Le système de recherche en ligne de CleanEx offre un accès aux entrées individuelles ainsi qu'à des outils d'analyse croisée de jeux de donnnées. Ces outils se sont avérés très efficaces dans le cadre de la comparaison de l'expression de gènes, ainsi que, dans une certaine mesure, dans la détection d'une variation de cette expression liée au phénomène d'épissage alternatif. Les fichiers et les outils de CleanEx sont accessibles en ligne (http://www.cleanex.isb-sib.ch/). Abstract: The automatic genome sequencing and annotation, as well as the large-scale gene expression measurements methods, generate a massive amount of data for model organisms. Searching for genespecific or organism-specific information througout all the different databases has become a very difficult task, and often results in fragmented and unrelated answers. The generation of a database which will federate and integrate genomic and transcriptomic data together will greatly improve the search speed as well as the quality of the results by allowing a direct comparison of expression results obtained by different techniques. The main goal of this project, called the CleanEx database, is thus to provide access to public gene expression data via unique gene names and to represent heterogeneous expression data produced by different technologies in a way that facilitates joint analysis and crossdataset comparisons. A consistent and uptodate gene nomenclature is achieved by associating each single gene expression experiment with a permanent target identifier consisting of a physical description of the targeted RNA population or the hybridization reagent used. These targets are then mapped at regular intervals to the growing and evolving catalogues of genes from model organisms, such as human and mouse. The completely automatic mapping procedure relies partly on external genome information resources such as UniGene and RefSeq. The central part of CleanEx is a weekly built gene index containing crossreferences to all public expression data already incorporated into the system. In addition, the expression target database of CleanEx provides gene mapping and quality control information for various types of experimental resources, such as cDNA clones or Affymetrix probe sets. The Affymetrix mapping files are accessible as text files, for further use in external applications, and as individual entries, via the webbased interfaces . The CleanEx webbased query interfaces offer access to individual entries via text string searches or quantitative expression criteria, as well as crossdataset analysis tools, and crosschip gene comparison. These tools have proven to be very efficient in expression data comparison and even, to a certain extent, in detection of differentially expressed splice variants. The CleanEx flat files and tools are available online at: http://www.cleanex.isbsib. ch/.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, we propose a copula-based method to generate synthetic gene expression data that account for marginal and joint probability distributions features captured from real data. Our method allows us to implant significant genes in the synthetic dataset in a controlled manner, giving the possibility of testing new detection algorithms under more realistic environments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the recent years, many protocols aimed at reproducibly sequencing reduced-genome subsets in non-model organisms have been published. Among them, RAD-sequencing is one of the most widely used. It relies on digesting DNA with specific restriction enzymes and performing size selection on the resulting fragments. Despite its acknowledged utility, this method is of limited use with degraded DNA samples, such as those isolated from museum specimens, as these samples are less likely to harbor fragments long enough to comprise two restriction sites making possible ligation of the adapter sequences (in the case of double-digest RAD) or performing size selection of the resulting fragments (in the case of single-digest RAD). Here, we address these limitations by presenting a novel method called hybridization RAD (hyRAD). In this approach, biotinylated RAD fragments, covering a random fraction of the genome, are used as baits for capturing homologous fragments from genomic shotgun sequencing libraries. This simple and cost-effective approach allows sequencing of orthologous loci even from highly degraded DNA samples, opening new avenues of research in the field of museum genomics. Not relying on the restriction site presence, it improves among-sample loci coverage. In a trial study, hyRAD allowed us to obtain a large set of orthologous loci from fresh and museum samples from a non-model butterfly species, with a high proportion of single nucleotide polymorphisms present in all eight analyzed specimens, including 58-year-old museum samples. The utility of the method was further validated using 49 museum and fresh samples of a Palearctic grasshopper species for which the spatial genetic structure was previously assessed using mtDNA amplicons. The application of the method is eventually discussed in a wider context. As it does not rely on the restriction site presence, it is therefore not sensitive to among-sample loci polymorphisms in the restriction sites that usually causes loci dropout. This should enable the application of hyRAD to analyses at broader evolutionary scales.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High-throughput screening of cellular effects of RNA interference (RNAi) libraries is now being increasingly applied to explore the role of genes in specific cell biological processes and disease states. However, the technology is still limited to specialty laboratories, due to the requirements for robotic infrastructure, access to expensive reagent libraries, expertise in high-throughput screening assay development, standardization, data analysis and applications. In the future, alternative screening platforms will be required to expand functional large-scale experiments to include more RNAi constructs, allow combinatorial loss-of-function analyses (e.g. genegene or gene-drug interaction), gain-of-function screens, multi-parametric phenotypic readouts or comparative analysis of many different cell types. Such comprehensive perturbation of gene networks in cells will require a major increase in the flexibility of the screening platforms, throughput and reduction of costs. As an alternative for the conventional multi-well based high-throughput screening -platforms, here the development of a novel cell spot microarray method for production of high density siRNA reverse transfection arrays is described. The cell spot microarray platform is distinguished from the majority of other transfection cell microarray techniques by the spatially confined array layout that allow highly parallel screening of large-scale RNAi reagent libraries with assays otherwise difficult or not applicable to high-throughput screening. This study depicts the development of the cell spot microarray method along with biological application examples of high-content immunofluorescence and phenotype based cancer cell biological analyses focusing on the regulation of prostate cancer cell growth, maintenance of genomic integrity in breast cancer cells, and functional analysis of integrin protein-protein interactions in situ.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Plant-virus interactions are very complex in nature and lead to disease and symptom formation by causing various physiological, metabolic and developmental changes in the host plants. These interactions are mainly the outcomes of viral hijacking of host components to complete their infection cycles and of host defensive responses to restrict the viral infections. Viral genomes contain only a small number of genes often encoding for multifunctional proteins, and all are essential in establishing a viral infection. Thus, it is important to understand the specific roles of individual viral genes and their contribution to the viral life cycles. Among the most important viral proteins are the suppressors of RNA silencing (VSRs). These proteins function to suppress host defenses mediated by RNA silencing and can also serve in other functions, e.g. in viral movement, transactivation of host genes, virus replication and protein processing. Thus these proteins are likely to have a significant impact on host physiology and metabolism. In the present study, I have examined the plant-virus interactions and the effects of three different VSRs on host physiology and gene expression levels by microarray analysis of transgenic plants that express these VSR genes. I also studied the gene expression changes related to the expression of the whole genome of Tobacco mosaic virus (TMV) in transgenic tobacco plants. Expression of the VSR genes in the transgenic tobacco plants causes significant changes in the gene expression profiles. HC-Pro gene derived from the Potyvirus Y (PVY) causes alteration of 748 and 332 transcripts, AC2 gene derived from the African cassava mosaic virus (ACMV) causes alteration of 1118 and 251transcripts, and P25 gene derived from the Potyvirus X (PVX) causes alterations of 1355 and 64 transcripts in leaves and flowers, respectively. All three VSRs cause similar up-regulation in defense, hormonally regulated and different stress-related genes and down-regulation in the photosynthesis and starch metabolism related genes. They also induce alterations that are specific to each viral VSR. The phenotype and transcriptome alterations of the HC-Pro expressing transgenic plants are similar to those observed in some Potyvirus-infected plants. The plants show increased protein degradation, which may be due to the HC-Pro cysteine endopeptidase and thioredoxin activities. The AC2-expressing transgenic plants show a similar phenotype and gene expression pattern as HC-Pro-expressing plants, but also alter pathways related to jasmonic acid, ethylene and retrograde signaling. In the P25 expressing transgenic plants, high numbers of genes (total of 1355) were up-regulated in the leaves, compared to a very low number of down-regulated genes (total of 5). Despite of strong induction of the transcripts, only mild growth reduction and no other distinct phenotype was observed in these plants. As an example of whole virus interactions with its host, I also studied gene expression changes caused by Tobacco mosaic virus (TMV) in tobacco host in three different conditions, i.e. in transgenic plants that are first resistant to the virus, and then become susceptible to it and in wild type plants naturally infected with this virus. The microarray analysis revealed up and down-regulation of 1362 and 1422 transcripts in the TMV resistant young transgenic plants, and up and down-regulation of a total of 1150 and 1200 transcripts, respectively, in the older plants, after the resistance break. Natural TMV infections in wild type plants caused up-regulation of 550 transcripts and down-regulation of 480 transcripts. 124 up-regulated and 29 down-regulated transcripts were commonly altered between young and old TMV transgenic plants, and only 6 up-regulated and none of the down-regulated transcripts were commonly altered in all three plants. During the resistant stage, the strong down-regulation in translation-related transcripts (total of 750 genes) was observed. Additionally, transcripts related to the hormones, protein degradation and defense pathways, cell division and stress were distinctly altered. All these alterations may contribute to the TMV resistance in the young transgenic plants, and the resistance may also be related to RNA silencing, despite of the low viral abundance and lack of viral siRNAs or TMV methylation activity in the plants.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The tagged microarray marker (TAM) method allows high-throughput differentiation between predicted alternative PCR products. Typically, the method is used as a molecular marker approach to determining the allelic states of single nucleotide polymorphisms (SNPs) or insertion-deletion (indel) alleles at genomic loci in multiple individuals. Biotin-labeled PCR products are spotted, unpurified, onto a streptavidin-coated glass slide and the alternative products are differentiated by hybridization to fluorescent detector oligonucleotides that recognize corresponding allele-specific tags on the PCR primers. The main attractions of this method are its high throughput (thousands of PCRs are analyzed per slide), flexibility of scoring (any combination, from a single marker in thousands of samples to thousands of markers in a single sample, can be analyzed) and flexibility of scale (any experimental scale, from a small lab setting up to a large project). This protocol describes an experiment involving 3,072 PCRs scored on a slide. The whole process from the start of PCR setup to receiving the data spreadsheet takes 2 d.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have performed microarray hybridization studies on 40 clinical isolates from 12 common serovars within Salmonella enterica subspecies I to identify the conserved chromosomal gene pool. We were able to separate the core invariant portion of the genome by a novel mathematical approach using a decision tree based on genes ranked by increasing variance. All genes within the core component were confirmed using available sequence and microarray information for S. enterica subspecies I strains. The majority of genes within the core component had conserved homologues in Escherichia coli K-12 strain MG1655. However, many genes present in the conserved set which were absent or highly divergent in K-12 had close homologues in pathogenic bacteria such as Shigella flexneri and Pseudomonas aeruginosa. Genes within previously established virulence determinants such as SPI1 to SPI5 were conserved. In addition several genes within SPI6, all of SPI9, and three fimbrial operons (fim, bcf, and stb) were conserved within all S. enterica strains included in this study. Although many phage and insertion sequence elements were missing from the core component, approximately half the pseudogenes present in S. enterica serovar Typhi were conserved. Furthermore, approximately half the genes conserved in the core set encoded hypothetical proteins. Separation of the core and variant gene sets within S. enterica subspecies I has offered fundamental biological insight into the genetic basis of phenotypic similarity and diversity across S. enterica subspecies I and shown how the core genome of these pathogens differs from the closely related E. coli K-12 laboratory strain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Affymetrix GeneChip arrays are widely used for transcriptomic studies in a diverse range of species. Each gene is represented on a GeneChip array by a probe- set, consisting of up to 16 probe-pairs. Signal intensities across probe- pairs within a probe-set vary in part due to different physical hybridisation characteristics of individual probes with their target labelled transcripts. We have previously developed a technique to study the transcriptomes of heterologous species based on hybridising genomic DNA (gDNA) to a GeneChip array designed for a different species, and subsequently using only those probes with good homology. Results: Here we have investigated the effects of hybridising homologous species gDNA to study the transcriptomes of species for which the arrays have been designed. Genomic DNA from Arabidopsis thaliana and rice (Oryza sativa) were hybridised to the Affymetrix Arabidopsis ATH1 and Rice Genome GeneChip arrays respectively. Probe selection based on gDNA hybridisation intensity increased the number of genes identified as significantly differentially expressed in two published studies of Arabidopsis development, and optimised the analysis of technical replicates obtained from pooled samples of RNA from rice. Conclusion: This mixed physical and bioinformatics approach can be used to optimise estimates of gene expression when using GeneChip arrays.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High-density oligonucleotide (oligo) arrays are a powerful tool for transcript profiling. Arrays based on GeneChip® technology are amongst the most widely used, although GeneChip® arrays are currently available for only a small number of plant and animal species. Thus, we have developed a method to improve the sensitivity of high-density oligonucleotide arrays when applied to heterologous species and tested the method by analysing the transcriptome of Brassica oleracea L., a species for which no GeneChip® array is available, using a GeneChip® array designed for Arabidopsis thaliana (L.) Heynh. Genomic DNA from B. oleracea was labelled and hybridised to the ATH1-121501 GeneChip® array. Arabidopsis thaliana probe-pairs that hybridised to the B. oleracea genomic DNA on the basis of the perfect-match (PM) probe signal were then selected for subsequent B. oleracea transcriptome analysis using a .cel file parser script to generate probe mask files. The transcriptional response of B. oleracea to a mineral nutrient (phosphorus; P) stress was quantified using probe mask files generated for a wide range of gDNA hybridisation intensity thresholds. An example probe mask file generated with a gDNA hybridisation intensity threshold of 400 removed > 68 % of the available PM probes from the analysis but retained >96 % of available A. thaliana probe-sets. Ninety-nine of these genes were then identified as significantly regulated under P stress in B. oleracea, including the homologues of P stress responsive genes in A. thaliana. Increasing the gDNA hybridisation intensity thresholds up to 500 for probe-selection increased the sensitivity of the GeneChip® array to detect regulation of gene expression in B. oleracea under P stress by up to 13-fold. Our open-source software to create probe mask files is freely available http://affymetrix.arabidopsis.info/xspecies/ webcite and may be used to facilitate transcriptomic analyses of a wide range of plant and animal species in the absence of custom arrays.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Molecular methods that permit the simultaneous detection and quantification of a large number of microbial species are currently employed in the evaluation of complex ecosystems. The checkerboard DNA-DNA hybridization technique enables the simultaneous identification of distinct bacterial. species in a large number of dental samples. The original technique employed digoxigenin-labeled whole genomic DNA probes which were detected by chemiluminescence. In this study, we present an alternative protocol for labeling and detecting whole genomic DNA probes in the Checkerboard DNA-DNA hybridization method. Whole genomic DNA was extracted from five bacterial species and labeled with fluorescein. The fluorescein labeled whole genomic DNA probes were hybridized against whole genomic DNA or subgingival plaque samples in a checkerboard hybridization format, followed by chemiluminescent detection. Our results reveal that fluorescein is a viable and adequate alternative labeling reagent to be employed in the checkerboard DNA-DNA hybridization technique. (c) 2007 Elsevier GmbH. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Aplasia of the mullerian ducts leads to absence of the uterine corpus, uterine cervix, and upper (superior) vagina. Patients with mullerian aplasia (MA) often exhibit additional clinical features such as renal, vertebral and cardiac defects. A number of different syndromes have been associated with MA, and in most cases its aetiology remains poorly understood. Objective and methods: 14 syndromic patients with MA and 46, XX G-banded karyotype were screened for DNA copy number changes by similar to 1 Mb whole genome bacterial artificial chromosome (BAC) array based comparative genomic hybridisation (CGH). The detected alterations were validated by an independent method and further mapped by high resolution oligo-arrays. Results: Submicroscopic genomic imbalances affecting the 1q21.1, 17q12, 22q11.21, and Xq21.31 chromosome regions were detected in four probands. Presence of the alterations in the normal mother of one patient suggests incomplete penetrance and/or variable expressivity. Conclusion: 4 of the 14 patients (29%) were found to have cryptic genomic alterations. The imbalances on 22q11.21 support recent findings by us and others that alterations in this chromosome region may result in impairment of mullerian duct development. The remaining imbalances indicate involvement of previously unknown chromosome regions in MA, and point specifically to LHX1 and KLHL4 as candidate genes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)