988 resultados para Miami River Valley
Resumo:
The construction of the Diama dam on the Senegal river, the Manantali dam on the Bafing river, Mali and the ensuing ecological changes have led to a massive outbreak of Schistosoma mansoni in Northern Senegal, associated with high intensity of infections, due to intense transmission, and the creation of new foci of S. haematobium. Data on the vectorial capacity of Biomphalaria pfeifferi from Ndombo, near Richard Toll, Senegal are presented with sympatric and allopatric (Cameroon) S. mansoni. Comparisons are made on infectivity, cercarial production, chronobiology of cercarial emergence and longevity of infected snails. Recent data on the intermediate host specificity of different isolates of S. haematobium from the Lower and Middle Valley of the Senegal river basin (SRB) demonstrate the existence of at least two strains of S. haematobium. The role of Bulinus truncatus in the transmission of S. haematobium in the Lower and Middle Valleys of the SRB is reviewed. Both S. haematobium and S. mansoni are transmitted in the same foci in some areas of the SRB.
Resumo:
Susceptibility and compatibility experiments were carried out with 700 Biomphalaria tenagophila from the Paraná River basin exposed to infection with Schistosoma mansoni. Individual infection was performed with 10 miracidia of SJ2 strain from the Paraiba valley (Brazil) originally infective to B. tenagophila. These snails were laboratory-breed progeny of B. tenagophila collected from six localities of Argentina and one from Paraguay. From Argentina: Rincón de Vences (7%) and Posadas (11%) became infected with S. mansoni and the calculation of Frandsen's index (TCP/100) shows that they were Class II poorly compatible. Those snails from Goya (22%), Maloyas (5%), and Berón de Astrada (3%) were Class III compatible to the S. mansoni. None of the 100 snails exposed from Caá-Catí became infected (Class 0 incompatible). Tested samples from Paraguay (Encarnación) were infected (20%) and compatible (Class III). It was also studied the persistence of the infection in 244 snails of the first generation (F1) of those that were susceptible from three places. It was demonstrated an increment of the susceptibility in the F1 from Maloyas (chi2 = 27.22; p = 0.0001) and Posadas (chi2 = 4.24; p = 0.04). The results point out the possibility that schistosomiasis might be able to spread into the Paraná River basin where B. tenagophila exists.
Resumo:
Around 11.5 * 106 m3 of rock detached from the eastern slope of the Santa Cruz valley (San Juan province, Argentina) in the first fortnight of January 2005. The rockslide?debris avalanche blocked the course, resulting in the development of a lake with maximum length of around 3.5 km. The increase in the inflow rate from 47,000?74,000 m3/d between April and October to 304,000 m3/d between late October and the first fortnight of November, accelerated the growing rate of the lake. On 12 November 2005 the dam failed, releasing 24.6 * 106 m3 of water. The resulting outburst flood caused damages mainly on infrastructure, and affected the facilities of a hydropower dam which was under construction 250 km downstream from the source area. In this work we describe causes and consequences of the natural dam formation and failure, and we dynamically model the 2005 rockslide?debris avalanche with DAN3D. Additionally, as a volume ~ 24 * 106 m3of rocks still remain unstable in the slope, we use the results of the back analysis to forecast the formation of a future natural dam. We analyzed two potential scenarios: a partial slope failure of 6.5 * 106 m3 and a worst case where all the unstable volume remaining in the slope fails. The spreading of those potential events shows that a new blockage of the Santa Cruz River is likely to occur. According to their modeled morphometry and the contributing watershed upstream the blockage area, as the one of 2005, the dams would also be unstable. This study shows the importance of back and forward analysis that can be carried out to obtain critical information for land use planning, hazards mitigation, and emergency management.
Resumo:
Ground clutter caused by anomalous propagation (anaprop) can affect seriously radar rain rate estimates, particularly in fully automatic radar processing systems, and, if not filtered, can produce frequent false alarms. A statistical study of anomalous propagation detected from two operational C-band radars in the northern Italian region of Emilia Romagna is discussed, paying particular attention to its diurnal and seasonal variability. The analysis shows a high incidence of anaprop in summer, mainly in the morning and evening, due to the humid and hot summer climate of the Po Valley, particularly in the coastal zone. Thereafter, a comparison between different techniques and datasets to retrieve the vertical profile of the refractive index gradient in the boundary layer is also presented. In particular, their capability to detect anomalous propagation conditions is compared. Furthermore, beam path trajectories are simulated using a multilayer ray-tracing model and the influence of the propagation conditions on the beam trajectory and shape is examined. High resolution radiosounding data are identified as the best available dataset to reproduce accurately the local propagation conditions, while lower resolution standard TEMP data suffers from interpolation degradation and Numerical Weather Prediction model data (Lokal Model) are able to retrieve a tendency to superrefraction but not to detect ducting conditions. Observing the ray tracing of the centre, lower and upper limits of the radar antenna 3-dB half-power main beam lobe it is concluded that ducting layers produce a change in the measured volume and in the power distribution that can lead to an additional error in the reflectivity estimate and, subsequently, in the estimated rainfall rate.
Resumo:
Deeply incised river networks are generally regarded as robust features that are not easily modified by erosion or tectonics. Although the reorganization of deeply incised drainage systems has been documented, the corresponding importance with regard to the overall landscape evolution of mountain ranges and the factors that permit such reorganizations are poorly understood. To address this problem, we have explored the rapid drainage reorganization that affected the Cahabon River in Guatemala during the Quaternary. Sediment-provenance analysis, field mapping, and electrical resistivity tomography (ERT) imaging are used to reconstruct the geometry of the valley before the river was captured. Dating of the abandoned valley sediments by the Be-10-Al-26 burial method and geomagnetic polarity analysis allow us to determine the age of the capture events and then to quantify several processes, such as the rate of tectonic deformation of the paleovalley, the rate of propagation of post-capture drainage reversal, and the rate at which canyons that formed at the capture sites have propagated along the paleovalley. Transtensional faulting started 1 to 3 million years ago, produced ground tilting and ground faulting along the Cahabon River, and thus generated differential uplift rate of 0.3 +/- 0.1 up to 0.7 +/- 0.4 mm . y(-1) along the river's course. The river responded to faulting by incising the areas of relative uplift and depositing a few tens of meters of sediment above the areas of relative subsidence. Then, the river experienced two captures and one avulsion between 700 ky and 100 ky. The captures breached high-standing ridges that separate the Cahabon River from its captors. Captures occurred at specific points where ridges are made permeable by fault damage zones and/or soluble rocks. Groundwater flow from the Cahabon River down to its captors likely increased the erosive power of the captors thus promoting focused erosion of the ridges. Valley-fill formation and capture occurred in close temporal succession, suggesting a genetic link between the two. We suggest that the aquifers accumulated within the valley-fills, increased the head along the subterraneous system connecting the Cahabon River to its captors, and promoted their development. Upon capture, the breached valley experienced widespread drainage reversal toward the capture sites. We attribute the generalized reversal to combined effects of groundwater sapping in the valley-fill, axial drainage obstruction by lateral fans, and tectonic tilting. Drainage reversal increased the size of the captured areas by a factor of 4 to 6. At the capture sites, 500 m deep canyons have been incised into the bedrock and are propagating upstream at a rate of 3 to 11 mm . y(-1) deepening at a rate of 0.7 to 1 5 mm . y(-1). At this rate, 1 to 2 million years will be necessary for headward erosion to completely erase the topographic expression of the paleovalley. It is concluded that the rapid reorganization of this drainage system was made possible by the way the river adjusted to the new tectonic strain field, which involved transient sedimentation along the river's course. If the river had escaped its early reorganization and had been given the time necessary to reach a new dynamic equilibrium, then the transient conditions that promoted capture would have vanished and its vulnerability to capture would have been strongly reduced.
Resumo:
Cross-hole radar tomography is a useful tool for mapping shallow subsurface electrical properties viz. dielectric permittivity and electrical conductivity. Common practice is to invert cross-hole radar data with ray-based tomographic algorithms using first arrival traveltimes and first cycle amplitudes. However, the resolution of conventional standard ray-based inversion schemes for cross-hole ground-penetrating radar (GPR) is limited because only a fraction of the information contained in the radar data is used. The resolution can be improved significantly by using a full-waveform inversion that considers the entire waveform, or significant parts thereof. A recently developed 2D time-domain vectorial full-waveform crosshole radar inversion code has been modified in the present study by allowing optimized acquisition setups that reduce the acquisition time and computational costs significantly. This is achieved by minimizing the number of transmitter points and maximizing the number of receiver positions. The improved algorithm was employed to invert cross-hole GPR data acquired within a gravel aquifer (4-10 m depth) in the Thur valley, Switzerland. The simulated traces of the final model obtained by the full-waveform inversion fit the observed traces very well in the lower part of the section and reasonably well in the upper part of the section. Compared to the ray-based inversion, the results from the full-waveform inversion show significantly higher resolution images. At either side, 2.5 m distance away from the cross-hole plane, borehole logs were acquired. There is a good correspondence between the conductivity tomograms and the natural gamma logs at the boundary of the gravel layer and the underlying lacustrine clay deposits. Using existing petrophysical models, the inversion results and neutron-neutron logs are converted to porosity. Without any additional calibration, the values obtained for the converted neutron-neutron logs and permittivity results are very close and similar vertical variations can be observed. The full-waveform inversion provides in both cases additional information about the subsurface. Due to the presence of the water table and associated refracted/reflected waves, the upper traces are not well fitted and the upper 2 m in the permittivity and conductivity tomograms are not reliably reconstructed because the unsaturated zone is not incorporated into the inversion domain.
Resumo:
The primary purposes of this investigation are: 1) To delineate flood plain deposits with different geologic and engineering properties. 2) To provide basic data necessary for any attempt at stabilizing flood plain deposits. The alluvial valley of the Missouri River adjacent to Iowa was chosen as the logical place to begin this study. The river forms the western boundary of the state for an airline distance of approximately 139 miles; and the flood plain varies from a maximum width of approximately 18 miles (Plates 2 and 3, Sheets 75 and 75L) to approximately 4 miles near Crescent, Iowa (Plate 8, Sheet 66). The area studied includes parts of Woodbury, Monona, Harrison, Pottawattamie, Mills, and Fremont counties in Iowa and parts of Dakota, Thurston, Burt, Washington, Douglas, Sarpy, Cass and Otoe counties in Nebraska. Plate l is an index map of the area under consideration.
Resumo:
ABSTRACT We aimed in this work to study natural populations of copaiba (Copaifera multijuga Hayne) on the Monte Branco mountain at Porto Trombetas-PA, in order to support sustainable management and the exploitation of oleoresin from copaiba. We studied the population structure of copaiba on hillsides and valleys of the south face of Monte Branco, within Saracá Taquera National Forest, where bauxite ore was extracted in the biennium 2013-2014 by Mineração Rio do Norte (MRN). We produced a 100% forest inventory of the specie and of oleoresin extraction in order to quantify the potential production of the remaining area. The density of copaiba individuals with DBH > 30 cm was 0.33 individuals per hectare in the hillside and 0.25 individuals per hectare in the valley. Both environments presented a density of 0.28 individuals per hectare. The average copaiba oleoresin yield was 0.661±0.334 liters in the hillside and 0.765±0.280 liters in the valley. The average value of both environments together (hillside and valley) was 0.714±0.218 liters. From all individuals with DBH over 30 cm, 38 (58%) produced some amount of oleoresin, averaging 1.113±0.562 liters in the hillside, 1.329±0.448 liters in the valley and 1.190±0.355 liters in both environments together. The results show the need for planning the use of the surroundings of the study area in order to reach the required volume of copaiba to make feasible the sustainable management of oleoresin extraction in the region.
Resumo:
This qualitative case study identifies and discusses the standards and risk management practices of the Ottawa Valley whitewater rafting industry and the impacts of the government enforced Special-purpose Vessels Regulations are discussed. Data collection occurred using a single case study design, which included interviews and document analysis. This study found that internal, industry, and actual standards are influenced through a variety of sources. These standards were found to affect the risk management practices of commercial whitewater rafting providers. In general, these standards promoted a high level of risk management within the Ottawa Valley rafting industry. The Special-purpose Vessels Regulations were found to be non-influential in raising the risk management standards of the Ottawa Valley whitewater rafting industry.
Resumo:
The proposed study is an attempt to quantify and study the seasonal and spatial variations in the distribution of Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb among the various geochemical phases in the surficial sediments of Chitrapuzha river. The study also estimates the concentration of heavy metals in dissolved, particulate and sediments and their variation in seasonal and spatial distribution. Chitrapuzha River originates as a small stream from the upper reaches of high ranges in the eastern boundary of Kerala, passes through the valley and finally joints in the Cochin backwaters. Numerous industrial units located along the banks of the river discharge treated and untreated effluents into the water. These are long standing local complaints about water pollution causing fish mortality and serious damage to agricultural crops resulting in extensive unemployment in the area. The river is thus of considerable social and economic importance.
Resumo:
Many lowland rivers across northwest Europe exhibit broadly similar behavioural responses to glacial-interglacial transitions and landscape development. Difficulties exist in assessing these, largely because the evidence from many rivers remains limited and fragmentary. Here we address this issue in the context of the river Kennet, a tributary of the Thames, since c. 13,000 cal BP. Some similarities with other rivers are present, suggesting that regional climatic shifts are important controls. The Kennet differs from the regional pattern in a number of ways. The rate of response to sudden climatic change, particularly at the start of the Holocene and also mid-Holocene forest clearance, appears very high. This may reflect abrupt shifts between two catchment scale hydrological states arising from contemporary climates, land use change and geology. Stadial hydrology is dominated by nival regimes, with limited winter infiltration and high spring and summer runoff. Under an interglacial climate, infiltration is more significant. The probable absence of permafrost in the catchment means that a lag between the two states due to its gradual decay is unlikely. Palaeoecology, supported by radiocarbon dates, suggests that, at the very start of the Holocene, a dramatic episode of fine sediment deposition across most of the valley floor occurred, lasting 500-1000 years. A phase of peat accumulation followed as mineral sediment supply declined. A further shift led to tufa deposition, initially in small pools, then across the whole floodplain area, with the river flowing through channels cut in tufa and experiencing repeated avulsion. Major floods, leaving large gravel bars that still form positive relief features on the floodplain, followed mid-Holocene floodplain stability. Prehistoric deforestation is likely to be the cause of this flooding, inducing a major environmental shift with significantly increased surface runoff. Since the Bronze Age, predominantly fine sediments were deposited along the valley with apparently stable channels and vertical floodplain accretion associated with soil erosion and less catastrophic flooding. The Kennet demonstrates that, while a general pattern of river behaviour over time, within a region, may be identifiable, individual rivers are likely to diverge from this. Consequently, it is essential to understand catchment controls, particularly the relative significance of surface and subsurface hydrology. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This paper presents the first systematic chronostratigraphic study of the river terraces of the Exe catchment in South West England and a new conceptual model for terrace formation in unglaciated basins with applicability to terrace staircase sequences elsewhere. The Exe catchment lay beyond the maximum extent of Pleistocene ice sheets and the drainage pattern evolved from the Tertiary to the Middle Pleistocene, by which time the major valley systems were in place and downcutting began to create a staircase of strath terraces. The higher terraces (8-6) typically exhibit altitudinal overlap or appear to be draped over the landscape, whilst the middle terraces show greater altitudinal separation and the lowest terraces are of a cut and fill form. The terrace deposits investigated in this study were deposited in cold phases of the glacial-interglacial Milankovitch climatic cycles with the lowest four being deposited in the Devensian Marine Isotope Stages (MIS) 4-2. A new cascade process-response model is proposed of basin terrace evolution in the Exe valley, which emphasises the role of lateral erosion in the creation of strath terraces and the reworking of inherited resistant lithological components down through the staircase. The resultant emergent valley topography and the reworking of artefacts along with gravel clasts, have important implications for the dating of hominin presence and the local landscapes they inhabited. Whilst the terrace chronology suggested here is still not as detailed as that for the Thames or the Solent System it does indicate a Middle Palaeolithic hominin presence in the region, probably prior to the late Wolstonian Complex or MIS 6. This supports existing data from cave sites in South West England.
Resumo:
The lithic record from the Solent River and its tributaries is re-examined in the light of recent interpretations about the changing demography of Britain during the Lower and early Middle Palaeolithic. Existing models of the terrace stratigraphies in the Solent and its tributary areas are reviewed and the corresponding archaeological record (specifically handaxes) for each terrace is assessed to provide models for the relative changes in human occupation through time. The Bournemouth area is studied in detail to examine the effects of quarrying and urbanisation on collection history and on the biases it introduces to the record. In addition, the effects of reworking of artefacts from higher into lower terraces are assessed, and shown to be a significant problem. Although there is very little absolute dating available for the Solent area, a cautious interpretation of the results from these analyses would suggest a pre-Marine Isotope Stage (MIS) 12 date for the first appearance of humans, a peak in population between MIS 12 and 10, and a decline in population during MIS 9 and 8. Owing to poor contextual data and small sample sizes, it is not clear when Levallois technology was introduced. This record is compared and contrasted to that from the Thames Valley. It is suggested that changes in the palaeogeography of Britain, in particular land connections to the continent, might have contributed to differences in the archaeological records from the Solent and Thames regions.
Resumo:
Total phosphorus concentrations in the sediment of a cascade of 8 reservoirs located in the Paranapanema River (SE, Brazil) were analysed during two consecutive seasonal periods (2000 and 200 1). The reservoirs of Jurumirim, Chavantes, Salto Grande, Canoas 11, Canoas 1, Capivara, Taquarucu and Rosana were built during the last five decades with the purpose of hydroelectric generation. The sampling points were distributed along a 700 km of river stretch in 19 stations distributed in the river-reservoirs zones and main tributaries as well as in 5 stations representing the adjacent wetlands. The nutrient concentration was determined in samples from surface layers of sediment. Temporal and spatial changes were observed for both years. Three different areas could be identified along the river, considering not only Tot-P variations but also others physical and chemical characteristics such as organic matter concentration, nitrogen concentration of sediment and 02, pH, conductivity and Eh measured in the bottom layer of the water column. Higher values of Tot-P were found in the middle and lower region of the Paranapanema basin (maximum value of 1.96 mg g(-1) in Tibagi River in October/2001). Agricultural practices and cattle raising are the main external sources of nutrient in these regions. Superficial or sub-superficial watershed drainage and tributaries entrances are important nutrient contributors, leading to an increasing accumulation of nutrient in the sediment. This process seems to be especially important in the middle region of the Paranapanema Valley, were the values of Tot-P were higher comparing to the other areas.