974 resultados para Metals in sediments


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crab Ucides cordatus and the red mangrove Rhizophora mangle are endemic mangrove species and potential bio-accumulators of metals. This study quantified the accumulation of six metals (Cd, Cr, Cu, Hg, Mn and Pb) in different organs (claw muscle, hepatopancreas and gills) of U. cordatus, as well as in different maturation stages of the leaves (buds, green mature, and pre-abscission senescent) of R. mangle. Samples were collected from mangrove areas in Cubatao, state of Sao Paulo, a heavily polluted region in Brazil. Data for metal contents in leaves were evaluated by one-way ANOVA; while for crabs a factorial ANOVA was used to investigate the effect of different tissues, animal size and the interactions between them. Means were compared by Tukey test at five percent, and the association between the metal concentrations in each crab organ, depending on the size, was evaluated by Pearson's linear correlation coefficient (r). Concentrations of Pb and Hg were undetectable for the different leaf stages and crab tissues, while Cd concentrations were undetectable in the leaf stages. In general, the highest accumulation of metals in R. mangle leaves occurred in pre-abscission senescent and green mature leaves, except for Cu, which was found in the highest concentrations in buds and green mature leaves. For the crab, Cd, Cu, Cr and Mn were present in concentrations above the detection limit, with the highest accumulation in the hepatopancreas, followed by the gills. Cu was accumulated mostly in the gills. Patterns of bioaccumulation between the crab and the mangrove tree differed for each metal, probably due to the specific requirements of each organism for essential metals. However, there was a close and direct relationship between metal accumulation in the mangrove trees and in the crabs feeding on them. Tissues of R. mangle leaves and U. cordatus proved effective for monitoring metals, acting as important bioindicators of mangrove areas contaminated by various metals. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ingestion of vegetables containing heavy metals is one of the main ways in which these elements enter the human body. Once entered, heavy metals are deposited in bone and fat tissues, overlapping noble minerals. Slowly released into the body, heavy metals can cause an array of diseases. This study aimed to investigate the concentrations of cadmium, nickel, lead, cobalt and chromium in the most frequently consumed foodstuff in the Sao Paulo State, Brazil and to compare the heavy metal contents with the permissible limits established by the Brazilian legislation. A value of intake of heavy metals in human diets was also calculated to estimate the risk to human health. Vegetable samples were collected at the Sao Paulo General Warehousing and Centers Company, and the heavy metal content was determined by atomic absorption spectrophotometry. All sampled vegetables presented average concentrations of Cd and Ni lower than the permissible limits established by the Brazilian legislation. Pb and Cr exceeded the limits in 44 % of the analyzed samples. The Brazilian legislation does not establish a permissible limit for Co contents. Regarding the consumption habit of the population in the Sao Paulo State, the daily ingestion of heavy metals was below the oral dose of reference, therefore, consumption of these vegetables can be considered safe and without risk to human health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heavy metals have been accumulating in Brazilian soils, due to natural processes, such as atmospheric deposition, or human industrial activities. For certain heavy metals, when in high concentrations in the soil, there is no specific extractant to determine the availability of these elements in the soil. The objective of the present study was to evaluate the availability of Cd, Cu, Fe, Mn, Pb and Zn for rice and soybeans, using different chemical extractants. In this study we used seven soil samples with different levels of contamination, in completely randomized experimental design with four replications. We determined the available concentrations of Cd, Cu, Fe, Mn, Pb and Zn extracted by Mehlich-1, HCl 0.1 mol L-1, DTPA, and organic acid extractants and the contents in rice and soybeans, which extracts were analyzed by ICP-OES. It was observed that Mehlich-1, HCl 0.1 mol L-1 and DTPA extractants were effective to assess the availability of Cd, Cu, Pb and Zn for rice and soybeans. However, the same was not observed for the organic acid extractant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Waste products from the forest industry are to be spread in forests in Sweden to counteract nutrient depletion due to whole tree harvesting. This may increase the bioavailability of calcium (Ca) and heavy metals, such as cadmium (Cd), copper (Cu) and zinc (Zn) in forest soils. Heavy metals, like Cd, have already been enriched in forest soils in Sweden, due to deposition of air pollutions, and acidification of forest soils has increased the bioavailability of toxic metals for plant uptake. Changes in the bioavailability of metals may be reflected in altered accumulation of Ca and heavy metals in forest trees, changes in tree growth, including wood formation, and altered tree species composition. This thesis aims at examining: A) if inter- or intra- specific differences in sensitivity to Cd occur in the most common tree species of Sweden, and if so, to study if these can be explained by the uptake and distribution of Cd within the plant: B) how elevated levels of Ca, Cd, Cu and Zn affect the accumulation and attachment of metals in bark and wood, and growth of young Norway spruce (Picea abies): C) how waste products from the forest industry, such as wood ash, influence the contents of Ca, Cd, Cu and Zn in wood and bark of young Norway spruce. Sensitivity to Cd, and its uptake and distribution, in seedlings of Picea abies, Pinus sylvestris and Betula pendula from three regions (southern, central and northern parts) of Sweden, treated with varying concentrations of Cd, were compared. Differences in root sensitivity to Cd both among and within woody species were found and the differences could to some extent be explained by differences in uptake and translocation of Cd. The root sensitivity assays revealed that birch was the least, and spruce the most, sensitive species, both to the external and to tissue levels of Cd. The central ecotype of the species tested tended to be most Cd resistant. The radial distribution, accumulation and attachment of, and interactions between Ca and heavy metals in stems of two-year-old Norway spruce trees treated with elevated levels of Cd, Cu, Zn and/or Ca, were investigated. Further, the influence of these metals on growth, and on root metal content, was examined. Accumulation of the metals was enhanced in wood, bark and/or roots at elevated levels of the metal in question. Even at low levels of the metals, similar to after application of wood ash, an enhanced accumulation was apparent in wood and/or bark, except for Cd. The increased accumulation of Zn and Cu in the stem did not affect the growth. However, Cu decreased the accumulation of Ca in wood. Higher levels of Cu and Cd reduced the stem diameter and the toxic effect was associated with a reduced Ca content in wood. Copper and Cd also decreased the accumulation of Zn in the stem. On the other hand, elevated levels of Ca increased the stem diameter and reduced the accumulation of Cd, Cu, Zn and Mn in wood and/or bark. When metals interacted with each other the firmly bound fraction of the metal reduced was in almost all cases not affected. As an exception, Cd decreased the firmly bound fraction of Zn in the stem. The influence of pellets of wood ash (ash) or a mixture of wood ash and green liquor dregs (ash+GLD), in the amount of 3000 kg ha-1, on the contents of Ca, Cd, Cu and Zn in wood and bark of young Norway spruce in the field was examined. The effect of the treatments on the metal content of bark and wood was larger after 3 years than after 6 years. Treatment with ash+GLD had less effect on the heavy metal content of bark and wood than treatment with ash alone. The ash treatment increased the Cu and Zn content in bark and wood, respectively, after 3 years, and decreased the Ca content of the wood after 6 years. The ash+GLD treatment increased the Ca content of the bark and decreased the Zn content of bark and wood after 3 years. Both treatments reduced, or tended to decrease, the Cd content in wood and bark at both times. To conclude, small changes in the bioavailability of Ca, Cu, Cd and Zn in forest soils, such as after spreading pellets of wood ash or a mixture of wood ash and green liquor dregs from the forest industry, will be reflected in an altered accumulation of metals in wood and bark of Norway spruce. It will not only be reflected in changed accumulation of those metals in which bioavailability in the soil has been enhanced, but also of other metals, probably partly due to interactions between metals. When metals interact the exchangeable bound fraction of the metal reduced is suggested to be the main fraction affected. The small alterations in accumulation of metals should not affect the growth of Norway spruce, especially since the changes in accumulation of metals are low, and further since these decrease over time. However, as an exception, one positive and maybe persistent effect of the waste products is that these may decrease the accumulation of Cd in Norway spruce, which partly may be explained by competition with Ca for uptake, translocation and binding. A decreased accumulation of Cd in Norway spruce will probably affect the trees positively, since Norway spruce is one of the most sensitive species to Cd of the forest trees in Sweden. Thus, spreading of waste products from the forest industry may be a solution to decrease the accumulation of Cd in Norway spruce. In a longer perspective, this will decrease the risk of Cd altering the tree species composition of the forest ecosystem. An elevated bioavailability of Ca in forest soils will, in addition to Cd, probably also decrease the accumulation of other less competitive heavy metals, like Zn and Mn, in the stem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poplar is considered a good candidate for phytoremediation, but its tolerance to heavy metals has not been fully investigated yet. In the present work, two different culture systems (in vitro and aeroponic/hydroponic) and two different stress tolerant clones of Populus alba (AL22 and Villafranca) were investigated for their total polyphenol and flavonoid content, individual phenolic compounds, polyamine, lipid peroxidation and hydrogen peroxide levels in response to Cu. In AL22 poplar plants cultured in vitro in the presence or absence of 50 μM Cu, total leaves polyphenol and flavonoid content was higher in treated samples than in controls but unaltered in the roots. Equally the same clone, grown under aeroponic conditions and hydroponically treated for 72 h with 100 μM Cu, displayed increased amount of polyphenols and flavonoids in the leaves, in particular chlorogenic acid and quercetin, and no differences in the roots. In exudates from treated roots total polyphenols and flavonoids, in particular catechin and epicatechin, were more abundant than in controls. Polyamine levels show an increase in conjugated putrescine (Put) and spermidine (Spd) was found. In the Villafranca clone, treated with 100 μM Cu for 6, 24 and 72 h, the pattern of polyphenol and flavonoid accumulation was the same as in AL22; in Cu-treated roots these compounds decreased compared with controls while they increased in root exudates. Free polyamine levels rose at 24 and 72 h while only conjugated Put increased at 24 h. Cu-treated Villafranca plants exhibited a higher malondialdehyde production than controls indicative of membrane lipid peroxidation and, therefore, oxidative stress. An in vitro experiment was carried to investigate the antioxidant effect of the polyamine spermidine (Spd). Exogenous Spd, supplied together with 100 μM Cu, reduced the accumulation of polyphenols and flavonoids, MDA and hydrogen peroxide induced by Cu.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die Verwendung von Metallen zur Entwicklung der heutigen fortschrittlichen technologischenrnGesellschaft lässt auf eine lange Geschichte zurück blicken. Im Zuge des letzten Jahrhundertsrnwurde realisiert, dass die chemischen und radioaktiven Eigenschaften von Metallen einernernsthafte Bedrohung für die Menschheit darstellen können. In der modernen Geochemie ist esrnallgemein akzeptiert, dass die spezifischen physikochemische Formen entscheidender sind, alsrndas Verhalten der gesamten Konzentration der Spurenmetalle in der Umwelt. Die Definition derrnArtbildung kann grob als die Identifizierung und Quantifizierung der verschiedenen Formen oderrnPhasen für ein Element zugeordnet werden. Die chemische Extraktion ist eine gemeinsamernSpeziierungstechnik bei der die Fraktionierung des Gesamtmetallgehaltes zur Analyse der Quellernanthropogener Metallkontamination und zur Vorhersage der Bioverfügbarkeit von verschiedenenrnMetallformen dient. Die Philosophie der partiellen und sequenziellen Extraktionsmethodernbesteht darin, dass insbesondere das Extraktionsmittel phasenspezifisch unter chemischemrnAngriff unterschiedlicher Mischungsformen steht. Die Speziation von Metall ist wichtig bei derrnBestimmung der Toxizität, Mobilität, Bioverfügbarkeit des Metalls und damit ihr Schicksal inrnder Umwelt und biologischem System. Die Artenbildungsanalyse kann für das Verständnis derrnAuswirkung auf die menschliche Gesundheit und bei ökologischen Risiken durch diernQuantifizierung von Metallspezies bei einem Untersuchungs-standort angewendet werden undrnanschließend können Sanierungsstrategien für den Standort umgesetzt werden. Mit Hilfe derrnSpezifizierung wurden Arsen und Kupfer in landwirtschaftlichem Kalkdünger und Thallium inrnkontaminierten Böden untersucht und in den folgenden Abschnitten im Einzelnen dargestellt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays we live in densely populated regions and this leads to many environmental issues. Among all pollutants that human activities originate, metals are relevant because they can be potentially toxic for most of living beings. We studied the fate of Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in a vineyard environment analysing samples of plant, wine and soil. Sites were chosen considering the type of wine produced, the type of cultivation (both organic and conventional agriculture) and the geographic location. We took vineyards that cultivate the same grape variety, the Trebbiano). We investigated 5 vineyards located in the Ravenna district (Italy): two on the Lamone Valley slopes, one in the area of river-bank deposits near Ravenna city, then a farm near Lugo and one near Bagnacavallo in interfluve regions. We carried out a very detailed characterization of soils in the sites, including the analysis of: pH, electric conductivity, texture, total carbonate and extimated content of dolomite, active carbonate, iron from ammonium oxalate, Iron Deficiency Chlorosis Index (IDCI), total nitrogen and organic carbon, available phosphorous, available potassium and Cation Exchange Capacity (CEC). Then we made the analysis of the bulk chemical composition and a DTPA extraction to determine the available fraction of elements in soils. All the sites have proper ground to cultivate, with already a good amount of nutrients, such as not needing strong fertilisations, but a vineyard on hills suffers from iron deficiency chlorosis due to the high level of active carbonate. We found some soils with much silica and little calcium oxide that confirm the marly sandstone substratum, while other soils have more calcium oxide and more aluminium oxide that confirm the argillaceous marlstone substratum. We found some critical situations, such as high concentrations of Chromium, especially in the farm near Lugo, and we noticed differences between organic vineyards and conventional ones: the conventional ones have a higher enrichment in soils of some metals (Copper and Zinc). Each metal accumulates differently in every single part of grapevines. We found differences between hill plants and lowland ones: behaviors of plants in metal accumulations seems to have patterns. Metals are more abundant in barks, then in leaves or sometimes in roots. Plants seem trying to remove excesses of metal storing them in bark. Two wines have excess of acetic acid and one conventional farm produces wine with content of Zinc over the Italian law limit. We already found evidence of high values relating them with uncontaminated environments, but more investigations are suggested to link those values to their anthropogenic supplies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many investigations have shown that the electrical resistance of soft annealed metals is usually smaller than that of metals in their hard, cold worked state. By annealing cold-worked metals, the electrical resistance decreases to a minimum and then increases upon continued annealing at higher temperatures. The work performed in this investigation upon silver, aluminum, copper, nickel, and soft steel corroborates this idea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the concentrations of 28 PAHs, 15 oxygenated PAHs (OPAHs) and 11 trace metals/metalloids (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn) in muscle and gut + gill tissues of demersal fishes (Drapane africana, Cynoglossus senegalensis and Pomadasys peroteti) from three locations along the coast of the Gulf of Guinea (Ghana). The concentrations of ∑ 28PAHs in muscle tissues averaged 192 ng g− 1 dw (range: 71–481 ng g− 1 dw) and were not statistically different between locations. The concentrations of ∑ 28 PAHs were higher in guts + gills than in muscles. The PAH composition pattern was dominated by low molecular weight compounds (naphthalene, alkyl-naphthalenes and phenanthrene). All fish tissues had benzo[a]pyrene concentrations lower than the EU limit for food safety. Excess cancer risk from consumption of some fish was higher than the guideline value of 1 × 10− 6. The concentrations of ∑ 15 OPAHs in fish muscles averaged 422 ng g− 1 dw (range: 28–1715 ng g− 1dw). The ∑ 15 OPAHs/∑ 16 US-EPA PAHs concentration ratio was > 1 in 68% of the fish muscles and 100% of guts + gills. The log-transformed concentrations of PAHs and OPAHs in muscles, guts + gills were significantly (p < 0.05) correlated with their octanol–water partitioning coefficients, strongly suggesting that equilibrium partitioning from water/sediment into fish tissue was the main mechanism of bioaccumulation. The trace metal concentrations in the fish tissues were in the medium range when compared to fish from other parts of the world. The concentrations of some trace metals (Cd, Cu, Fe, Mn, Zn) were higher in guts + gills than in muscle tissues. The target hazard quotients for metals were < 1 and did not indicate a danger to the local population. We conclude that the health risk arising from the consumption of the studied fish (due to their PAHs and trace metals content) is minimal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acoustic backscatter contrast in depositional sediments under salmon farm cages in the Bay of Fundy, Canada, was correlated with localized changes in (unknown) sediment geotechnical properties, as indicated by 4 independent measures of organic enrichment. Sediment total sulfides and redox potentials, enzyme hydrolyzable amino acids, sediment profile imaging and macrofaunal samples, taken at mid-cage positions, each rejected the null hypothesis that salmon cage footprints, defined acoustically as high backscatter areas, were indistinguishable from nearby reference areas. Acoustic backscatter imaging appears capable of mapping organic enrichment in depositional sediments caused by excessive inputs of salmon farm wastes associated with intensive aquaculture.