897 resultados para Mesh generation from image data
Resumo:
We consider the problem of reconstruction of the temperature from knowledge of the temperature and heat flux on a part of the boundary of a bounded planar domain containing corner points. An iterative method is proposed involving the solution of mixed boundary value problems for the heat equation (with time-dependent conductivity). These mixed problems are shown to be well-posed in a weighted Sobolev space.
Resumo:
In current organizations, valuable enterprise knowledge is often buried under rapidly expanding huge amount of unstructured information in the form of web pages, blogs, and other forms of human text communications. We present a novel unsupervised machine learning method called CORDER (COmmunity Relation Discovery by named Entity Recognition) to turn these unstructured data into structured information for knowledge management in these organizations. CORDER exploits named entity recognition and co-occurrence data to associate individuals in an organization with their expertise and associates. We discuss the problems associated with evaluating unsupervised learners and report our initial evaluation experiments in an expert evaluation, a quantitative benchmarking, and an application of CORDER in a social networking tool called BuddyFinder.
Resumo:
Distributed Brillouin sensing of strain and temperature works by making spatially resolved measurements of the position of the measurand-dependent extremum of the resonance curve associated with the scattering process in the weakly nonlinear regime. Typically, measurements of backscattered Stokes intensity (the dependent variable) are made at a number of predetermined fixed frequencies covering the design measurand range of the apparatus and combined to yield an estimate of the position of the extremum. The measurand can then be found because its relationship to the position of the extremum is assumed known. We present analytical expressions relating the relative error in the extremum position to experimental errors in the dependent variable. This is done for two cases: (i) a simple non-parametric estimate of the mean based on moments and (ii) the case in which a least squares technique is used to fit a Lorentzian to the data. The question of statistical bias in the estimates is discussed and in the second case we go further and present for the first time a general method by which the probability density function (PDF) of errors in the fitted parameters can be obtained in closed form in terms of the PDFs of the errors in the noisy data.
Resumo:
In this paper, three iterative procedures (Landweber-Fridman, conjugate gradient and minimal error methods) for obtaining a stable solution to the Cauchy problem in slow viscous flows are presented and compared. A section is devoted to the numerical investigations of these algorithms. There, we use the boundary element method together with efficient stopping criteria for ceasing the iteration process in order to obtain stable solutions.
Resumo:
An iterative procedure is proposed for the reconstruction of a stationary temperature field from Cauchy data given on a part of the boundary of a bounded plane domain where the boundary is smooth except for a finite number of corner points. In each step, a series of mixed well-posed boundary value problems are solved for the heat operator and its adjoint. Convergence is proved in a weighted L2-space. Numerical results are included which show that the procedure gives accurate and stable approximations in relatively few iterations.
Resumo:
A compact all-room-temperature frequency-doubling scheme generating cw orange light with a periodically poled potassium titanyl phosphate waveguide and a quantum-dot external cavity diode laser is demonstrated. A frequency-doubled power of up to 4.3 mW at the wavelength of 612.9 nm with a conversion efficiency exceeding 10% is reported. Second harmonic wavelength tuning between 612.9 nm and 616.3 nm by changing the temperature of the crystal is also demonstrated. © Springer-Verlag 2010.
Resumo:
This paper presents the current status of our research in mode-locked quantum-dot edge-emitting laser diodes, particularly highlighting the recent progress in spectral and temporal versatility of both monolithic and external-cavity laser configurations. Spectral versatility is demonstrated through broadband tunability and novel mode-locking regimes that involve distinct spectral bands, such as dual-wavelength mode-locking, and robust high-power wavelength bistability. Broad tunability of the pulse repetition rate is also demonstrated for an external-cavity mode-locked quantum-dot laser, revealing a nearly constant pulse peak power at different pulse repetition rates. High-energy and low-noise pulse generations are demonstrated for low-pulse repetition rates. These recent advances confirm the potential of quantum-dot lasers as versatile, compact, and low-cost sources of ultrashort pulses. © 2011 IEEE.
Resumo:
Self-seeded, gain-switched operation of an InGaN multi-quantum-well diode laser is reported for the first time. Narrow-line, wavelength-tunable, picosecond pulses have been generated from a standard, uncoated diode laser in an external cavity.
Resumo:
This paper presents a technique for building complex and adaptive meshes for urban and architectural design. The combination of a self-organizing map and cellular automata algorithms stands as a method for generating meshes otherwise static. This intends to be an auxiliary tool for the architect or the urban planner, improving control over large amounts of spatial information. The traditional grid employed as design aid is improved to become more general and flexible.
Resumo:
We present a compact, all-room-temperature continuous-wave laser source in the visible spectral region between 574 and 647 nm by frequency doubling of a broadly tunable InAs/GaAs quantum-dot external-cavity diode laser in a periodically poled potassium titanyl phosphate crystal containing three waveguides with different cross-sectional areas (4 × 4, 3 × 5, and 2 μm × 6 μm). The influence of a waveguide's design on tunability, output power, and mode distribution of second-harmonic generated light, as well as possibilities to increase the conversion efficiency via an optimization of a waveguide's cross-sectional area, was systematically investigated. A maximum output power of 12.04 mW with a conversion efficiency of 10.29% at 605.6 nm was demonstrated in the wider waveguide with the cross-sectional area of 4 μm × 4 μm.
Resumo:
The purpose of the work is to claim that engineers can be motivated to study statistical concepts by using the applications in their experience connected with Statistical ideas. The main idea is to choose a data from the manufacturing factility (for example, output from CMM machine) and explain that even if the parts used do not meet exact specifications they are used in production. By graphing the data one can show that the error is random but follows a distribution, that is, there is regularily in the data in statistical sense. As the error distribution is continuous, we advocate that the concept of randomness be introducted starting with continuous random variables with probabilities connected with areas under the density. The discrete random variables are then introduced in terms of decision connected with size of the errors before generalizing to abstract concept of probability. Using software, they can then be motivated to study statistical analysis of the data they encounter and the use of this analysis to make engineering and management decisions.
Dark soliton generation from semiconductor optical amplifier gain medium in ring fiber configuration
Resumo:
We have investigated the mode-lock operation from a semiconductor optical amplifier (SOA) gain chip in the ring fibre configuration. At lower pump currents, the laser generates dark soliton pulses both at the fundamental repetition rate of 39 MHz and supports up to the 6th harmonic order corresponding to 234-MHz repetition rate with an output power of ∼2.1 mW. At higher pump currents, the laser can be switched between the bright, dark and concurrent bright and dark soliton generation regimes.
Resumo:
The paper exploits the unique strengths of Statistics Canada's Longitudinal Administrative Database ("LAD"), constructed from individuals' tax records, to shed new light on the extent and nature of the emigration of Canadians to other countries and their patterns of return over the period 1982-1999. The empirical evidence begins with some simple graphs of the overall rates of leaving over time, and follows with the presentation of the estimation results of a model that essentially addresses the question: "who moves?" The paper then analyses the rates of return for those observed to leave the country - something for which there is virtually no existing evidence. Simple return rates are reported first, followed by the results of a hazard model of the probability of returning which takes into account individuals' characteristics and the number of years they have already been out of the country. Taken together, these results provide a new empirical basis for discussions of emigration in general, and the brain drain in particular. Of particular interest are the ebb and flow of emigration rates observed over the last two decades, including a perhaps surprising turndown in the most recent years after climbing through the earlier part of the 1990s; the data on the number who return after leaving, the associated patterns by income level, and the increases observed over the last decade.