998 resultados para Material specification
Resumo:
In this study, fibers of barbed wire structure were obtained by electrospinning blend of organic conducting crystalline material and polyethylene oxide. Thermal and structural characterization of the blend fibers has been carried out to study the fiber characteristics. An increase in crystallinity in the electrospun fibers was observed and was attributed to both electrospinning process as well as addition of organic conducting crystalline material. A mechanism for the formation of this barbed wire structure has also been proposed. (C) 2012 American Institute of Physics. [doi:10.1063/1.3673620]
Resumo:
Examination of experimental data of the modelled rockfill materials using parallel gradation technique has revealed that the plots of logarithm of strain at failure against logarithm of confining pressure are linear. Also, a trend of increase in failure strain with increase in confining pressure and maximum size of the particle have been observed. The approach presented in this paper highlights the prediction of volume change properties of rockfill materials over a range of confining pressures and particle sizes based on the results of only two tests carried out at two different confining pressures for a maximum particle size of modelled material with the use of parallel gradation technique. Two test approach and its application in modelling of rockfill materials to estimate its volume change behaviour is illustrated by means of a selected experimental data available in the literature.
Resumo:
Analysis of compressibility data of diatom earth and Ariake clay of similar water holding capacities has been made in this paper. Analysis suggests that in the case of clays with sheet minerals such as in Ariake clays, due to compression, cluster growth takes place, whereas with diatom earth the breakdown of cluster accounts for bilinear compression characteristics. It has been hypothesized that the interactive void ratio in the case of diatom earth is likely to be far smaller than that in the case of Ariake clay where most of the pore water is herd by micropores enclosed by clay particle clusters. In a way diatom earth reflects the behaviour of clay of very law physico-chemical potential with far reduced collapse potential. Even the compressibility at higher stress range both in undisturbed and remolded states are likely to be due to breakdown of clusters with little contribution from the physico - chemical potential. Diatom earth is not a collapsible material at stress levels of engineering interest despite the in -situ water content is at par or even higher than soft sensitive Ariake clay with comparatively low cementation consequently with pronounced collapsible potential.
Resumo:
3-(2,3-Dimethoxyphenyl)-1-(pyridin-2-yl)prop-2-en-1-one (DMPP) a potential second harmonic generating (SHG) has been synthesized and grown as a single crystal by the slow evaporation technique at ambient temperature. The structure determination of the grown crystal was done by single crystal X-ray diffraction study. DMPP crystallizes with orthorhombic system with cell parameters a = 20.3106(8)angstrom, b = 4.9574(2)angstrom, c = 13.4863(5)angstrom, alpha = 90 degrees, beta = 90 degrees, gamma = 90 degrees and space group Pca2(1). The crystals were characterized by FT-IR, thermal analysis, UV-vis-NIR spectroscopy and SHG measurements. Various functional groups present in DMPP were ascertained by FTIR analysis. DMPP is thermally stable up to 80 degrees C and optically transparent in the visible region. The crystal exhibits SHG efficiency comparable to that of KDP. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Crystals of a new nonlinear optical (NLO) material, viz., L-asparagine-L-tartaric acid (LALT)(1) were grown by slow evaporation of an aqueous solution containing equimolar concentrations of L-asparagine and t-tartaric acid. The structure of the title compound which crystallizes in the non-centrosymmetric monoclinic space group P2(1) consists of a molecule of L-asparagine and a molecule of free L-tartaric acid both of which are interlinked by three varieties of H-bonding interactions namely O-H center dot center dot center dot O, N-H center dot center dot center dot O and C-H center dot center dot center dot O. The UV-Vis-NIR spectrum of 1 reveals its transparent nature while the vibrational spectra confirm the presence of the functional groups in 1. The thermal stability and second harmonic generation (SHG) conversion efficiency of 1 were investigated. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
LiNi0.8Co0.2O2 cathode material for lithium ion batteries is synthesized by reaction under autogenic pressure at elevated temperature (RAPET) method. The simple synthesis procedure is time and energy saving, and thus is promising for commercial application. The structure and stability of the material have been characterized by means of XRD and TG-DTA. The electrochemical properties of the LiNi0.8Co0.2O2 cathode are investigated in 2 M Li2SO4 aqueous electrolyte and they are compared to that in an organic electrolyte. A battery cell consisting of LiNi0.8Co0.2O2 as cathode in 2 M Li2SO4 solution is constructed in combination with LiTi2 (PO4)(3) as anode. The cell retained almost constant discharge capacity over hundred cycles. The electrochemical impedance spectral ( EIS) studies in aqueous and nonaqueous electrolytes revealed that the mechanism of lithium ion intercalation and deintercalation processes in LiNi0.8Co0.2O2 electrode follow almost similar mechanism in both aqueous and nonaqueous electrolytes. The chemical diffusion coefficient was calculated from slow scan rate cyclic voltammetry and EIS. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.075205jes] All rights reserved.
Resumo:
A flexible composite suitable for MHz frequency application has been developed by combining Fe3O4 and polyvinyl alcohol (PVA). The loss factor and the permeability have been evaluated. At an optimum weight percentage of Fe3O4 in the PVA matrix, the frequency at which the loss factor gives a minimum shifts to the MHz region. The loss factor has been found to be lower by one order of magnitude at 70 MHz compared to the presently used nickel zinc ferrite. The Henkel plot and the Cole-Cole plot have been obtained for the understanding of the high magnetic permeability and the low loss factor. (C) 2012 American Institute of Physics. doi:10.1063/1.3672867]
Resumo:
Doping of TiO2 with a suitable metal ion where dopant redox potential couples with that of titanium (Ti4+) and act as catalyst for additional reduction of Ti4+ to Ti2+ (Ti4+ -> Ti3+ -> Ti2+) is envisaged here to enhance lithium storage even higher than one Li/TiO2. Accordingly, 10 atom% Pt ion substituted TiO2, Ti0.9Pt0.1O2 nanocrystallites was synthesized by sonochemical method using diethylenetriamine (DETA) as complexing agent. Powder X-ray diffraction pattern (XRD), Rietveld refinement and TEM study reveals that Ti0.9Pt0.1O2 nanocrystallites of similar to 4 nm size crystallize in anatase structure. X-ray photo-electron spectroscopy (XPS) study confirms that and both Ti and Pt are in 4+ oxidation state. Due to Pt4+ ion substitution in TiO2, reducibility of TiO2 was enhanced and Ti4+ was reduced up to Ti2+ state via coupling of Pt states (Pt4+/Pt2+/Pt-0) with Ti states (Ti4+/Ti3+/Ti2+). Galvanostatic cycling of Ti0.9Pt0.1O2 against lithium showed very high capacity of 430 mAhg(-1) or exchange of similar to 1.5Li/Ti0.9Pt0.1O2. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.029208jes] All rights reserved.
Resumo:
The hydrothermal reaction of a mixture of a colloidal dispersion of graphite oxide and ammonium vanadate yielded a hybrid made of graphene and a nanotubular metastable monoclinic polymorph of VO2, known as VO2(B). The formation of VO2(B) nanotubes is accompanied by the reduction of graphite oxide. Initially the partially scrolled graphite oxide layers act as templates for the crystallization of VO2(B) in the tubular morphology. This is followed by the reduction of graphite oxide to graphene resulting in a hybrid in which VO2(B) nanotubes are dispersed in graphene. Electron microscopic studies of the hybrid reveal that the VO2(B) nanotubes are wrapped by and trapped between graphene sheets. The hybrid shows potential to be a high capacity cathode material for lithium ion batteries. It exhibits a high capacity (similar to 450 mAh/g) and cycling stability. The high capacity of the hybrid is attributed to the interaction between the graphene sheets and the VO2(B) tubes which improves the charge-transfer. The graphene matrix prevents the aggregation of the VO2(B) nanotubes leading to high cycling stability. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Several research groups have attempted to optimize photopolymerization parameters to increase the throughput of scanning based microstereolithography (MSL) systems through modified beam scanning techniques. Efforts in reducing the curing line width have been implemented through high numerical aperture (NA) optical setups. However, the intensity contour symmetry and the depth of field of focus have led to grossly non-vertical and non-uniform curing profiles. This work tries to review the photopolymerization process in a scanning based MSL system from the aspect of material functionality and optical design. The focus has been to exploit the rich potential of photoreactor scanning system in achieving desired fabrication modalities (minimum curing width, uniform depth profile, and vertical curing profile) even with a reduced NA optical setup and a single movable stage. The present study tries to manipulate to its advantage the effect of optimized lower c] (photoinitiator (PI) concentration) in reducing the minimum curing width to similar to 10-20 mu m even with a higher spot size (similar to 21.36 mu m) through a judiciously chosen ``monomer-PI'' system. Optimization on grounds of increasing E-max (maximum laser exposure energy at surface) by optimizing the scan rate provides enough time for the monomer or resin to get cured across the entire resist thickness (surface to substrate similar to 10-100 mu m), leading to uniform depth profiles along the entire scan lengths. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4750975]
Resumo:
Single crystals of lithium D-isoascorbate monohydrate (LDAM), (C6H7O6Li center dot H2O), are grown by a solution growth method. The crystal structure of LDAM is solved using single crystal X-ray diffraction. The space group is orthorhombic P2(1)2(1)2(1) with four formula units per unit cell and lattice parameters a = 7.7836(3) angstrom, b = 8.7456(3) angstrom, and c = 11.0368(4) angstrom. Solubility of the material in water is determined thermogravimetrically and found to have a positive temperature coefficient of solubility. Large optical quality single crystals are subsequently grown from aqueous solution by a slow cooling method. The crystal has a bulky prismatic habit and among the prominent faces the c face appears as the only principal morphological face. The crystal exhibits a (010) cleavage. Dielectric spectroscopy reveals a nearly Debye type Cole-Cole behavior with anisotropy in relaxation. Optical transmission range is found to be from 300 to 1400 nm. The principal refractive indices of this biaxial crystal, measured using Brewster's angle method, at wavelengths 405, 543, and 632.8 nm, show high dispersion. The crystal is negative biaxial with 2V(z) = 107.8 degrees (405 nm) and belongs to the Hobden class 3. Theoretically generated type 1 and type 2 second order phase matching curves match very well with the experimental results. The second-order nonlinear coefficient d(14) was determined to be 7 x 10(-13) m/V. For the optimum phase matching direction (type 2), the second-order effective nonlinear coefficient and the walk off angle are determined to be 0.84 times d(14) and 3.5 degrees respectively. The crystal possesses high multiple surface damage thresholds of 18 GW/cm(2) and 8 GW/cm(2) at laser wavelengths 1064 and 532 nm, respectively.
Resumo:
Polynomial Chaos Expansion with Latin Hypercube sampling is used to study the effect of material uncertainty on vibration control of a smart composite plate with piezoelectric sensors/actuators. Composite material properties and piezoelectric coefficients are considered as independent and normally distributed random variables. Numerical results show substantial variation in structural dynamic response due to material uncertainty of active vibration control system. This change in response due to material uncertainty can be compensated by actively tuning the feedback control system. Numerical results also show variation in dispersion of dynamic characteristics and control parameters with respect to ply angle and stacking sequence.
Resumo:
Several constitutive inequalities have been proposed in the literature to quantify the notion that ‘stress increases with strain’ in an elastic material. Due to some inherent shortcomings in them, which we discuss, we propose a new tensorial criterion for isotropic materials. We also present necessary conditions in terms of elasticity tensors for the onset of elastic instabilities.
Resumo:
SEPALLATA (SEP) MADS box transcription factors mediate floral development in association with other regulators. Mutants in five rice (Oryza sativa) SEP genes suggest both redundant and unique functions in panicle branching and floret development. LEAFY HULL STERILE1/OsMADS1, from a grass-specific subgroup of LOFSEP genes, is required for specifying a single floret on the spikelet meristem and for floret organ development, but its downstream mechanisms are unknown. Here, key pathways and directly modulated targets of OsMADS1 were deduced from expression analysis after its knockdown and induction in developing florets and by studying its chromatin occupancy at downstream genes. The negative regulation of OsMADS34, another LOFSEP gene, and activation of OsMADS55, a SHORT VEGETATIVE PHASE-like floret meristem identity gene, show its role in facilitating the spikelet-to-floret meristem transition. Direct regulation of other transcription factor genes like OsHB4 (a class III homeodomain Leu zipper member), OsBLH1 (a BEL1-like homeodomain member), OsKANADI2, OsKANADI4, and OsETTIN2 show its role in meristem maintenance, determinacy, and lateral organ development. We found that the OsMADS1 targets OsETTIN1 and OsETTIN2 redundantly ensure carpel differentiation. The multiple effects of OsMADS1 in promoting auxin transport, signaling, and auxin-dependent expression and its direct repression of three cytokinin A-type response regulators show its role in balancing meristem growth, lateral organ differentiation, and determinacy. Overall, we show that OsMADS1 integrates transcriptional and signaling pathways to promote rice floret specification and development.