874 resultados para Mass effects
Resumo:
Matrixassisted laser desorption/ionization (MALDI) mass spectra of saccharides with three common matrixes were studied here. It is shown that Na+ and K+ play important roles in the determination of oligasaccharide molecule weight and the molecular weights (MW) of glucans(dextran) with MW more than 10 000 is determined successfully with the help of column chromatography, By comparing the effects of three matrixes in saccharide analysis and comparing positive-ion and negative-ion matrixassisted laser desorption/ionization mass spectra of oligo- and polysaccharides, the most suitable matrix for saccharide analysis, 2,5-dihydroxylbezonic acid (DHB), is selected and the ion formation processes of saccharides under matrix-assisted laser adsorption/ionization condition are clarified.
Resumo:
An electrochemical quartz crystal microbalance was employed to monitor directly the growth of vanadium hexacyanoferrate (VHF) films on platinum substrates during electrodeposition and interfacial coagulation in the solution containing sulfuric acid electrolyte, vanadium(IV) and hexacyanoferrate(III). Mass changes of the gold/crystal working electrode were correlated with cyclic voltammetry data. Effects of cations (NH4+, Li+, Na+ and K+), anions (SO42- and NO3-) and solvent during redox reactions of the films were studied. The results show that cations were incorporated into the film during reduction and expelled from the film during oxidation. Solvent also participates in VHF electrochemistry, and its role cannot be neglected. Anions play no role in VHF electrochemistry. (C) 1997 Elsevier Science S.A.
Resumo:
With the intention of understanding chemical recycling of waste polymers, various kinds of zeolites were used as catalysts in the pyrolysis of polypropylene (PP). The effects of zeolites on the degradation temperature and pyrolyzed products of PP were studied. It was found that the degradation temperature of PP strongly depended on the type of zeolite used and the amount added. One type of HY zeolite (320HOA) was shown to be a very effective catalyst. Pyrolysis products, which were identified by using a coupled gas-chromatograph-mass-spectrometer, were also affected by the addition of zeolites. Some zeolites did not change the structure of the products but narrowed the product distribution to a smaller molecule region, while the HY zeolite led to hydrocarbons concentrated at those containing 4-9 carbons. Furthermore, some new compounds with cyclic structures were found in the presence of the HY zeolite. (C) 1996 Elsevier Science Limited
Resumo:
It is found that the nitro substituent of some aromatic bifunctional compounds shows unusual reactivity towards protonation. In the chemical ionization mass spectra of nitrobenzoic acids and their esters and amides, and of nitrophenols and their ethers, protonations on the carboxyl, ester, amide, hydroxyl or alkoxyl groups are highly suppressed by that on the nitro group. As a result, fragmentations based on protonation on these groups unexpectedly become negligible. Ortho effects were observed for all the ortho isomers where the initial protonation on the nitro group is followed by an intramolecular proton transfer reaction, which leads to the expected 'normal' fragmentations. Protonation on the nitro substituent is much more favourable in energy than on any of the other substituents. The interaction of the two substituents through the conjugating benzene ring is found to be responsible for this 'unfair' competitive protonation. The electron-attracting nitro group strongly destabilizes the MH+ ions formed through protonation on the other substituent; although the COR (R = OH, OMe, OEt, NH2) groups are also electron-withdrawing, their effects are weaker than that of NO2; thus protonation on the latter group produces more-stable MH+ ions. On the other hand, an electron-releasing group OR (R = H, Me, Et) stabilizes the nitro-protonated species; the stronger the electron-donating effect of this group the more stable the nitro-protonated ions.
Resumo:
The theoretical solution of the model of the Northern Yellow (Huanghai) Sea Cold Water Mass (NYSCWM) reveals that the NYSCWM is mainly formed through the continuous temperature increase of the overwintered water body above the Northern Yellow Sea Depression (NYSD) after spring when heat is continuously conducted from the sea surface to the deeper layer. In the NYSCWM's growing period, (June-July), nonlinear vertical convection and advection effects continuously increase, and are gradually balanced by the heat diffusion effect as the temperature increases from the surface to the bottom, which leads to the formation of an intensive thermocline and lateral front. Meanwhile, the three-dimensional circulation correspondingly occurs. In the NYSCWM's entire growing period, the horizontal circulation is always in the cyclonic motion, while the vertical circulation passes through a transition from a period with the cold centre as downwelling to a period with the cold centre as upwelling.
Resumo:
The effects of temperature and food availability on the life history strategy of the planktonic copepod Calanus sinicus in the southern Yellow Sea in summer were studied in this paper. The fifth copepodite stage (CV) dominates the population in the central part of the southern Yellow Sea, where the Yellow Sea Cold Water Mass (YSCWM) occurs below the thermocline. Incubation experiments were conducted on CV C. sinicus caught from the YSCWM to examine the effects of temperature and food availability. Temperature at the surface (27degreesC) is lethal to CVs regardless of food availability. At the temperature in the middle of the thermocline (18degreesC), survival time of the specimens depends on food availability, being similar to20 days in treatments without extra food supply. At the temperature in the YSCWM (9degreesC), most animals survive at the end of 27 day incubation even in treatments without food supply. Developmental rate of CVs at 9degreesC without extra food supply is extremely low. The increase of either temperature or food supply promotes the developmental rate of CVs. According to these results, the surface layers with high temperature and low food abundance are detrimental for the survival and reproduction of C. sinicus. Low temperature and low food availability in the YSCWM help CV to maintain a much lower developmental rate and higher survival rate. The ecological trait of C. sinicus in the southern Yellow Sea in summer cannot be sufficiently explained solely by the effects of temperature.
Resumo:
The botanical insecticide azadirachtin affects a variety of biological processes. Our early work indicated that protein level and type are significantly influenced by azadirachtin in pupae of Osttiniafumacalis (Guenee) (Lepidoptera: Crambidae) because a correlation exists between protein content and azadiraebtin concentration. By use of proteomic techniques, we analyzed changes in hemolymph protein expression of 48-h-old pupae in O. furnacalis induced by azadirachtin treatment. After feeding by third instars on an artificial diet containing 10 ppm azadirachtin until pupation, 48-b-old pupae were collected, and hemolymph protein samples were prepared. They were separated by two-dimensional polyacrylamide gel electrophoresis, and six proteins were significantly affected by azadiracbtin treatment compared with an untreated control. Two of these proteins were identified by database searching with peptide mass fingerprinting by using matrix-assisted laser desorption/ time-of-flight mass spectrometry after in-gel trypsin digestion. They belong to the insect apolipophorin-III and phospboribosyltransferase family, respectively. These two proteins may function on lipid metabolism in insect hemolymph. Furthermore, fat body is the center of synthesis and secretion of hemolymph proteins. We suggest that the azadirachtin exerts its insecticidal effects on the fat body of O. furnacalis by interfering with protein expression related to hemolymph lipid metabolism.
Resumo:
Jenkins, Tudor; Vaidyanathan, S.; Jones, D.G.; Ellis, J., (2007) 'Laser desorption/ionization mass spectrometry on porous silicon for metabolome analyses: influence of surface oxidation', Rapid Communications in Mass Spectrometry 21(13) pp.2157-2166 RAE2008
Resumo:
In order to determine the size-resolved chemical composition of single particles in real-time an ATOFMS was deployed at urban background sites in Paris and Barcelona during the MEGAPOLI and SAPUSS monitoring campaigns respectively. The particle types detected during MEGAPOLI included several carbonaceous species, metal-containing types and sea-salt. Elemental carbon particle types were highly abundant, with 86% due to fossil fuel combustion and 14% attributed to biomass burning. Furthermore, 79% of the EC was apportioned to local emissions and 21% to continental transport. The carbonaceous particle types were compared with quantitative measurements from other instruments, and while direct correlations using particle counts were poor, scaling of the ATOFMS counts greatly improved the relationship. During SAPUSS carbonaceous species, sea-salt, dust, vegetative debris and various metal-containing particle types were identified. Throughout the campaign the site was influenced by air masses altering the composition of particles detected. During North African air masses the city was heavily influenced by Saharan dust. A regional stagnation was also observed leading to a large increase in carbonaceous particle counts. While the ATOFMS provides a list of particle types present during the measurement campaigns, the data presented is not directly quantitative. The quantitative response of the ATOFMS to metals was examined by comparing the ion signals within particle mass spectra and to hourly mass concentrations of; Na, K, Ca, Ti, V, Cr, Mn, Fe, Zn and Pb. The ATOFMS was found to have varying correlations with these metals depending on sampling issues such as matrix effects. The strongest correlations were observed for Al, Fe, Zn, Mn and Pb. Overall the results of this work highlight the excellent ability of the ATOFMS in providing composition and mixing state information on atmospheric particles at high time resolution. However they also show its limitations in delivering quantitative information directly.
Resumo:
Understanding how dynamic ecological communities respond to anthropogenic drivers of change such as habitat loss and fragmentation, climate change and the introduction of alien species requires that there is a theoretical framework able to predict community dynamics. At present there is a lack of empirical data that can be used to inform and test predictive models, which means that much of our knowledge regarding the response of ecological communities to perturbations is obtained from theoretical analyses and simulations. This thesis is composed of two strands of research: an empirical experiment conducted to inform the scaling of intraspecific and interspecific interaction strengths in a three species food chain and a series of theoretical analyses on the changes to equilibrium biomass abundances following press perturbations. The empirical experiment is a consequence of the difficulties faced when parameterising the intraspecific interaction strengths in a Lotka-Volterra model. A modification of the dynamic index is used alongside the original dynamic index to estimate intraspecific interactions and interspecific interaction strengths in a three species food. The theoretical analyses focused on the effect of press perturbations to focal species on the equilibrium biomass densities of all species in the community; these perturbations allow for the quantification of a species total net effect. It was found that there is a strong and consistent positive relationship between a species body size and its total net effect for a set of 97 synthetic food webs and also for the Ythan Estuary and Tuesday Lake food webs (empirically described food webs). It is shown that ecological constraints (due to allometric scaling) on the magnitude of entries in the community matrix cause the patterns observed in the inverse community matrix and thus explain the relationship between a species body mass and its total net effect in a community.
Atmospheric neutrino oscillation analysis with subleading effects in Super-Kamiokande I, II, and III
Resumo:
We present a search for nonzero θ13 and deviations of sin2θ23 from 0.5 in the oscillations of atmospheric neutrino data from Super-Kamiokande I, II, and III. No distortions of the neutrino flux consistent with nonzero θ13 are found and both neutrino mass hierarchy hypotheses are in agreement with the data. The data are best fit at Δm2=2.1×10-3eV2, sin2θ13=0.0, and sin2θ23=0.5. In the normal (inverted) hierarchy θ13 and Δm2 are constrained at the one-dimensional 90% C.L. to sin2θ13<0.04(0.09) and 1.9(1.7)×10 -3<Δm2<2.6(2.7)×10-3eV2. The atmospheric mixing angle is within 0.407≤sin2θ23≤0.583 at 90% C.L. © 2010 The American Physical Society.
Resumo:
This paper presents simulated computational fluid dynamics (CFD) results for comparison against experimental data. The performance of four turbulence models has been assessed for electronic application areas considering both fluid flow and heat transfer phenomenon. CFD is vast becoming a powerful and almost essential tool for design, development and optimization in engineering problems. However turbulence models remain to be the key problem issue when tackling such flow phenomena. The reliability of CFD analysis depends heavily on the performance of the turbulence model employed together with the wall functions implemented. To be able to resolve the abrupt changes in the turbulent energy and other parameters near the wall a particularly fine mesh is necessary which unfortunately increases the computer storage capacity requirements. The objective of turbulence modelling is to enhance computational procdures of sufficient acccuracy and generality for engineers to anticipate the Reynolds stresses and the scalar transport terms.
Resumo:
Prediction of tandem mass spectrometric (MS/MS) fragmentation for non-peptidic molecules based on structure is of immense interest to the mass spectrometrist. If a reliable approach to MS/MS prediction could be achieved its impact within the pharmaceutical industry could be immense. Many publications have stressed that the fragmentation of a molecular ion or protonated molecule is a complex process that depends on many parameters, making prediction difficult. Commercial prediction software relies on a collection of general heuristic rules of fragmentation, which involve cleaving every bond in the structure to produce a list of 'expected' masses which can be compared with the experimental data. These approaches do not take into account the thermodynamic or molecular orbital effects that impact on the molecule at the point of protonation which could influence the potential sites of bond cleavage based on the structural motif. A series of compounds have been studied by examining the experimentally derived high-resolution MS/MS data and comparing it with the in silico modelling of the neutral and protonated structures. The effect that protonation at specific sites can have on the bond lengths has also been determined. We have calculated the thermodynamically most stable protonated species and have observed how that information can help predict the cleavage site for that ion. The data have shown that this use of in silico techniques could be a possible way to predict MS/MS spectra. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
The aim of this study was to examine the effects of cadence and power output on physiological and biomechanical responses to incremental arm-crank ergometry (ACE). Ten male subjects (mean +/- SD age, 30.4 +/-5.4 y; height, 1.78 +/-0.07 m; mass, 86.1 +/-14.2 kg) undertook 3 incremental ACE protocols to determine peak oxygen uptake (VO2 peak; mean of 3 tests: 3.07 +/- 0.17 L.min-1) at randomly assigned cadences of 50, 70, or 90 r.min-1. Heart rate and expired air were continually monitored. Central (RPE-C) and local (RPE-L) ratings of perceived exertion were recorded at volitional exhaustion. Joint angles and trunk rotation were analysed during each exercise stage. During submaximal power outputs of 50, 70, and 90 W, oxygen consumption (VO2) was lowest for 50 r.min-1 and highest for 90 r.min-1 (p < 0.01). VO2 peak was lowest during 50 r.min-1 (2.79 +/-0.45 L.min-1; p < 0.05) when compared with both 70 r.min-1 and 90 r.min-1 (3.16 +/-0.58, 3.24 +/-0.49 L.min-1, respectively; p > 0.05). The difference between RPE-L and RPE-C at volitional exhaustion was greatest during 50 r.min-1 (2.9 +/- 1.6) when compared with 90 r.min-1 (0.9 +/- 1.9, p < 0.05). At VO2 peak, shoulder range of motion (ROM) and trunk rotation were greater for 50 and 70 r.min-1 when compared with 90 r.min-1 (p < 0.05). During submaximal power outputs, shoulder angle and trunk rotation were greatest at 50 r.min-1 when compared with 90 r.min-1 (p < 0.05). VO2 was inversely related to both trunk rotation and shoulder ROM during submaximal power outputs. The results of this study suggest that the greater forces required at lower cadences to produce a given power output resulted in greater joint angles and range of shoulder and trunk movement. Greater isometric contractions for torso stabilization and increased cost of breathing possibly from respiratory-locomotor coupling may have contributed increased oxygen consumption at higher cadences.
Resumo:
Preserved and archived organic material offers huge potential for the conduct of retrospective and long-term historical ecosystem reconstructions using stable isotope analyses, but because of isotopic exchange with preservatives the obtained values require validation. The Continuous Plankton Recorder (CPR) Survey is the most extensive long-term monitoring program for plankton communities worldwide and has utilised ships of opportunity to collect samples since 1931. To keep the samples intact for subsequent analysis, they are collected and preserved in formalin; however, previous studies have found that this may alter stable carbon and nitrogen isotope ratios in zooplankton. A maximum ~0.9‰ increase of δ15N and a time dependent maximum ~1.0‰ decrease of δ13C were observed when the copepod, Calanus helgolandicus, was experimentally exposed to two formalin preservatives for 12 months. Applying specific correction factors to δ15N and δ13C values for similarly preserved Calanoid species collected by the CPR Survey within 12 months of analysis may be appropriate to enable their use in stable isotope studies. The isotope values of samples stored frozen did not differ significantly from those of controls. Although the impact of formalin preservation was relatively small in this and other studies of marine zooplankton, changes in isotope signatures are not consistent across taxa, especially for δ15N, indicating that species-specific studies may be required. Copyright © 2011 John Wiley & Sons, Ltd.