978 resultados para Mantiqueira province
Resumo:
On the basis of the geological field investigations and isotope geochronological studies the Sm-Nd isochron age (513 Ma?0 Ma), Rb-Sr isochron age (511 Ma? Ma) and K-Ar age (312-317 Ma) of the Dapingzhang spilite-keratophyre formation in Yunnan Province are presented. From these geochronological data it is evidenced that this suite of volcanic rocks was formed in the Cambrian and the parent magma was derived from a depleted mantle, which was influenced by crustal contamination and/or seawater hydrothermal
Resumo:
The sedimentary-volcanic tuff (locally called "green-bean rock") formed during the early Middle Triassic volcanic event in Guizhou Province is characterized as being thin, stable, widespread, short in forming time and predominantly green in color. The green-bean rock is a perfect indicator for stratigraphic division. Its petrographic and geochemical features are unique, and it is composed mainly of glassy fragments and subordinately of crystal fragments and volcanic ash balls. Analysis of the major and trace elements and rare-earth elements ( REE), as well as the related diagrams, permits us to believe that the green-bean rock is acidic volcanic material of the calc-alkaline series formed in the Indosinian orogenic belt on the Sino-Vietnam border, which was atmospherically transported to the tectonically stable areas and then deposited as sedimentary-volcanic rocks there. According to the age of green-bean rock, it is deduced that the boundary age of the Middle-Lower Triassic overlain by the sedimentary-volcanic tuff is about 247 Ma.
Resumo:
REE geochemistry data from the Fanshan alunite deposit indicated that its ore-forming materials came chiefly from the country rocks, with δCe〉0 for alunite ores. According to the differences in δEu, the alunite ores were divided into three types: weak negative Eu anomaly, weak positive Eu anomaly and remarkable positive Eu anomaly. The phenomena of Ce-enrichment in the ores indicated that the Fanshan alunite deposit was formed in an oxidizing environment. Variations in fO2 are corresponding to those in δEu: Eu anomaly varies from negative to positive with increasing fO2. And two other important factors may impact the occurrence of Eu anomalies: the contents of alkaline feldspar and the protolith structure in the mineralization period.
Resumo:
Starting with the research status of bio-metallogenesis of Tl deposits and their geology, this work deals with the geological background of Tl enrichment and mineralization and the mechanism of bio- metal-logenesis of Tl deposits, as exemplified by Tl deposits in the low-temperature minerogenetic province. This research on the bio-metallogenesis of Tl deposits is focused on the correlations between bio-enrichment and Tl, the enrichment of Tl in micro-paleo-animals in rocks and ores, bio-fossil casts in Tl-rich ores, the involvement of bio-sulfur in minerogenesis and the enrichment of bio-genetic organic carbon in Tl ores. Thallium deposits have experienced two ore-forming stages: syngenetic bio- en-richment and epigenetic hydrothermal reworking (or transformation). Owing to the intense epigenetic hydrothermal reworking, almost no bio-residues remain in syngenetically bio-enriched Tl ores, thereby the Tl deposits display the characteristics of hydrothermally reoworked deposits.