871 resultados para Machine vision and image processing


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When tracking resources in large-scale, congested, outdoor construction sites, the cost and time for purchasing, installing and maintaining the position sensors needed to track thousands of materials, and hundreds of equipment and personnel can be significant. To alleviate this problem a novel vision based tracking method that allows each sensor (camera) to monitor the position of multiple entities simultaneously has been proposed. This paper presents the full-scale validation experiments for this method. The validation included testing the method under harsh conditions at a variety of mega-project construction sites. The procedure for collecting data from the sites, the testing procedure, metrics, and results are reported. Full-scale validation demonstrates that the novel vision tracking provides a good solution to track different entities on a large, congested construction site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The existing machine vision-based 3D reconstruction software programs provide a promising low-cost and in some cases automatic solution for infrastructure as-built documentation. However in several steps of the reconstruction process, they only rely on detecting and matching corner-like features in multiple views of a scene. Therefore, in infrastructure scenes which include uniform materials and poorly textured surfaces, these programs fail with high probabilities due to lack of feature points. Moreover, except few programs that generate dense 3D models through significantly time-consuming algorithms, most of them only provide a sparse reconstruction which does not necessarily include required points such as corners or edges; hence these points have to be manually matched across different views that could make the process considerably laborious. To address these limitations, this paper presents a video-based as-built documentation method that automatically builds detailed 3D maps of a scene by aligning edge points between video frames. Compared to corner-like features, edge points are far more plentiful even in untextured scenes and often carry important semantic associations. The method has been tested for poorly textured infrastructure scenes and the results indicate that a combination of edge and corner-like features would allow dealing with a broader range of scenes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A synthesized photochromic compound-pyrrylfulgide-is prepared as a thin film doped in a polymethylmethacrylate (PMMA) matrix. Under irradiation by UV light, the film converts from the bleached state into a colored state that has a maximum absorption at 635 nm and is thermally stable at room temperature. When the colored state is irradiated by a linearly polarized 650 nm laser, the film returns to the bleached state; photoinduced anisotropy is produced during this process. Application of optical image processing methods using the photoinduced anisotropy of the pyrrylfulgide/PMMA film is described. Examples in non-Fourier optical image processing, such as contrast reversal and image subtraction and summation, as well as in Fourier optical image processing, such as low-pass filtering and edge enhancement, are presented. (c) 2006 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The amount of computation required to solve many early vision problems is prodigious, and so it has long been thought that systems that operate in a reasonable amount of time will only become feasible when parallel systems become available. Such systems now exist in digital form, but most are large and expensive. These machines constitute an invaluable test-bed for the development of new algorithms, but they can probably not be scaled down rapidly in both physical size and cost, despite continued advances in semiconductor technology and machine architecture. Simple analog networks can perform interesting computations, as has been known for a long time. We have reached the point where it is feasible to experiment with implementation of these ideas in VLSI form, particularly if we focus on networks composed of locally interconnected passive elements, linear amplifiers, and simple nonlinear components. While there have been excursions into the development of ideas in this area since the very beginnings of work on machine vision, much work remains to be done. Progress will depend on careful attention to matching of the capabilities of simple networks to the needs of early vision. Note that this is not at all intended to be anything like a review of the field, but merely a collection of some ideas that seem to be interesting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liu, Yonghuai. Improving ICP with Easy Implementation for Free Form Surface Matching. Pattern Recognition, vol. 37, no. 2, pp. 211-226, 2004.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Office of Naval Research (N00014-01-1-0624)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

— Consideration of how people respond to the question What is this? has suggested new problem frontiers for pattern recognition and information fusion, as well as neural systems that embody the cognitive transformation of declarative information into relational knowledge. In contrast to traditional classification methods, which aim to find the single correct label for each exemplar (This is a car), the new approach discovers rules that embody coherent relationships among labels which would otherwise appear contradictory to a learning system (This is a car, that is a vehicle, over there is a sedan). This talk will describe how an individual who experiences exemplars in real time, with each exemplar trained on at most one category label, can autonomously discover a hierarchy of cognitive rules, thereby converting local information into global knowledge. Computational examples are based on the observation that sensors working at different times, locations, and spatial scales, and experts with different goals, languages, and situations, may produce apparently inconsistent image labels, which are reconciled by implicit underlying relationships that the network’s learning process discovers. The ARTMAP information fusion system can, moreover, integrate multiple separate knowledge hierarchies, by fusing independent domains into a unified structure. In the process, the system discovers cross-domain rules, inferring multilevel relationships among groups of output classes, without any supervised labeling of these relationships. In order to self-organize its expert system, the ARTMAP information fusion network features distributed code representations which exploit the model’s intrinsic capacity for one-to-many learning (This is a car and a vehicle and a sedan) as well as many-to-one learning (Each of those vehicles is a car). Fusion system software, testbed datasets, and articles are available from http://cns.bu.edu/techlab.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The What-and-Where filter forms part of a neural network architecture for spatial mapping, object recognition, and image understanding. The Where fllter responds to an image figure that has been separated from its background. It generates a spatial map whose cell activations simultaneously represent the position, orientation, ancl size of all tbe figures in a scene (where they are). This spatial map may he used to direct spatially localized attention to these image features. A multiscale array of oriented detectors, followed by competitve and interpolative interactions between position, orientation, and size scales, is used to define the Where filter. This analysis discloses several issues that need to be dealt with by a spatial mapping system that is based upon oriented filters, such as the role of cliff filters with and without normalization, the double peak problem of maximum orientation across size scale, and the different self-similar interpolation properties across orientation than across size scale. Several computationally efficient Where filters are proposed. The Where filter rnay be used for parallel transformation of multiple image figures into invariant representations that are insensitive to the figures' original position, orientation, and size. These invariant figural representations form part of a system devoted to attentive object learning and recognition (what it is). Unlike some alternative models where serial search for a target occurs, a What and Where representation can he used to rapidly search in parallel for a desired target in a scene. Such a representation can also be used to learn multidimensional representations of objects and their spatial relationships for purposes of image understanding. The What-and-Where filter is inspired by neurobiological data showing that a Where processing stream in the cerebral cortex is used for attentive spatial localization and orientation, whereas a What processing stream is used for attentive object learning and recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A key goal of computational neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how laminar neocortical circuits give rise to biological intelligence. These circuits embody two new and revolutionary computational paradigms: Complementary Computing and Laminar Computing. Circuit properties include a novel synthesis of feedforward and feedback processing, of digital and analog processing, and of pre-attentive and attentive processing. This synthesis clarifies the appeal of Bayesian approaches but has a far greater predictive range that naturally extends to self-organizing processes. Examples from vision and cognition are summarized. A LAMINART architecture unifies properties of visual development, learning, perceptual grouping, attention, and 3D vision. A key modeling theme is that the mechanisms which enable development and learning to occur in a stable way imply properties of adult behavior. It is noted how higher-order attentional constraints can influence multiple cortical regions, and how spatial and object attention work together to learn view-invariant object categories. In particular, a form-fitting spatial attentional shroud can allow an emerging view-invariant object category to remain active while multiple view categories are associated with it during sequences of saccadic eye movements. Finally, the chapter summarizes recent work on the LIST PARSE model of cognitive information processing by the laminar circuits of prefrontal cortex. LIST PARSE models the short-term storage of event sequences in working memory, their unitization through learning into sequence, or list, chunks, and their read-out in planned sequential performance that is under volitional control. LIST PARSE provides a laminar embodiment of Item and Order working memories, also called Competitive Queuing models, that have been supported by both psychophysical and neurobiological data. These examples show how variations of a common laminar cortical design can embody properties of visual and cognitive intelligence that seem, at least on the surface, to be mechanistically unrelated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A neural network theory of :3-D vision, called FACADE Theory, is described. The theory proposes a solution of the classical figure-ground problem for biological vision. It does so by suggesting how boundary representations and surface representations are formed within a Boundary Contour System (BCS) and a Feature Contour System (FCS). The BCS and FCS interact reciprocally to form 3-D boundary and surface representations that arc mutually consistent. Their interactions generate 3-D percepts wherein occluding and occluded object completed, and grouped. The theory clarifies how preattentive processes of 3-D perception and figure-ground separation interact reciprocally with attentive processes of spatial localization, object recognition, and visual search. A new theory of stereopsis is proposed that predicts how cells sensitive to multiple spatial frequencies, disparities, and orientations are combined by context-sensitive filtering, competition, and cooperation to form coherent BCS boundary segmentations. Several factors contribute to figure-ground pop-out, including: boundary contrast between spatially contiguous boundaries, whether due to scenic differences in luminance, color, spatial frequency, or disparity; partially ordered interactions from larger spatial scales and disparities to smaller scales and disparities; and surface filling-in restricted to regions surrounded by a connected boundary. Phenomena such as 3-D pop-out from a 2-D picture, DaVinci stereopsis, a 3-D neon color spreading, completion of partially occluded objects, and figure-ground reversals are analysed. The BCS and FCS sub-systems model aspects of how the two parvocellular cortical processing streams that join the Lateral Geniculate Nucleus to prestriate cortical area V4 interact to generate a multiplexed representation of Form-And-Color-And-Depth, or FACADE, within area V4. Area V4 is suggested to support figure-ground separation and to interact. with cortical mechanisms of spatial attention, attentive objcect learning, and visual search. Adaptive Resonance Theory (ART) mechanisms model aspects of how prestriate visual cortex interacts reciprocally with a visual object recognition system in inferotemporal cortex (IT) for purposes of attentive object learning and categorization. Object attention mechanisms of the What cortical processing stream through IT cortex are distinguished from spatial attention mechanisms of the Where cortical processing stream through parietal cortex. Parvocellular BCS and FCS signals interact with the model What stream. Parvocellular FCS and magnocellular Motion BCS signals interact with the model Where stream. Reciprocal interactions between these visual, What, and Where mechanisms arc used to discuss data about visual search and saccadic eye movements, including fast search of conjunctive targets, search of 3-D surfaces, selective search of like-colored targets, attentive tracking of multi-element groupings, and recursive search of simultaneously presented targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Concise Intro to Image Processing using C++ presents state-of-the-art image processing methodology, including current industrial practices for image compression, image de-noising methods based on partial differential equations, and new image compression methods such as fractal image compression and wavelet compression. It includes elementary concepts of image processing and related fundamental tools with coding examples as well as exercises. With a particular emphasis on illustrating fractal and wavelet compression algorithms, the text covers image segmentation, object recognition, and morphology. An accompanying CD-ROM contains code for all algorithms.