249 resultados para MYOTOXIC PHOSPHOLIPASES
Resumo:
Antiophidic activity from decoct of Jatropha gossypiifolia L. leaves against Bothrops jararaca venom. Snakebites are a serious worldwide public health problem. In Latin America, about 90 % of accidents are attributed to snakes from Bothrops genus. Currently, the main available treatment is the antivenom serum therapy, which has some disadvantages such as inability to neutralize local effects, risk of immunological reactions, high cost and difficult access in some regions. In this context, the search for alternative therapies to treat snakebites is relevant. Jatropha gossypiifolia L., a medicinal plant popularly known in Brazil as “pinhão-roxo”, is very used in folk medicine as antiophidic. So, the aim of this study is to evaluate the antiophidic properties of this species against enzymatic and biological activities from Bothrops jararaca snake venom. The aqueous leaf extract of J. gossypiifolia was prepared by decoction. The inhibition studies were performed in vitro, by pre-incubation of a fixed amount of venom with different amounts of extract from J. gossypiifolia for 60 min at 37 °C, and in vivo, through oral or intraperitoneal treatment of animals, in different doses, 60 min before venom injection. The proteolytic activity upon azocasein was efficiently inhibited, indicating inhibitory action upon metalloproteinases (SVMPs) and/or serine proteases (SVSPs). The extract inhibited the fibrinogenolytic activity, which was also confirmed by zymography, where it was possible to observe that the extract preferentially inhibits fibrinogenolytic enzymes of 26 and 28 kDa. The coagulant activity upon fibrinogen and plasma were significantly inhibited, suggesting an inhibitory action upon thrombin-like enzymes (SVTLEs), as well as upon clotting factor activators toxins. The extract prolonged the activated partial thromboplastin time (aPTT), suggesting an inhibitory action toward not only to SVTLEs, but also against endogenous thrombin. The defibrinogenating activity in vivo was efficiently inhibited by the extract on oral route, confirming the previous results. The local hemorrhagic activity was also significantly inhibited by oral route, indicating an inhibitory action upon SVMPs. The phospholipase activity in vitro was not inhibited. Nevertheless, the edematogenic and myotoxic activities were efficiently inhibited, by oral and intraperitoneal route, which may indicate an inhibitory effect of the extract upon Lys49 phospholipase (PLA2) and/ or SVMPs, or also an anti-inflammatory action against endogenous chemical mediators. Regarding the possible action mechanism, was observed that the extract did not presented proteolytic activity, however, presented protein precipitating action. In addition, the extract showed significant antioxidant activity in different models, which could justify, at least partially, the antiophidic activity presented. The metal chelating action presented by extract could be correlated with SVMPs inhibition, once these enzymes are metal-dependent. The phytochemical analysis revealed the presence of sugars, alkaloids, flavonoids, tannins, terpenes and/or steroids and proteins, from which the flavonoids could be pointed as major compounds, based on chromatographic profile obtained by thin layer chromatography (TLC). In conclusion, the results demonstrate that the J. gossypiifolia leaves decoct present potential antiophidic activity, including action upon snakebite local effects, suggesting that this species may be used as a new source of bioactive molecules against bothropic venom.
Resumo:
Snakebites are a serious public health problem in tropical and subtropical countries and Bothrops genus is responsible for the accidents in Brazil and throughout Latin America (90% of cases). The local effects (pain, edema, hemorrhage and myonecrosis) and systemic (cardiovascular alterations, shock and blood clotting disorders) caused by the venom of Bothrops are due to the numerous protein and non-protein components, which are part of the constitution of the poison. The only form of therapy is scientifically validated antivenom serum therapy which, however, is not effective with respect to local effects produced, risk of immunological reactions, high cost and difficult access in some regions. Thus, the search for new alternatives to serum therapy becomes important, and in this context, many medicinal plants have been highlighted by the popular use as antiophidic. Among these plants, we can mention the species Jatropha mollissima (Euphorbiaceae) which has popular use in traditional medicine as antiophidic, anti-inflammatory, antimicrobial and antipyretic. Therefore, this study aims to evaluate the neutralizing potential of local effects induced by the venom of Bothrops erythromelas and Bothrops jararaca with the aqueous extract of the leaves of J. mollissima. The leaf extracts were prepared by decoction, fractionated (by liquid-liquid partition) and characterized by thin layer chromatography (TLC) and High Performance Liquid Chromatography (HPLC). Antiophidic activity of the extract was evaluated in model of paw edema, peritonitis, bleeding and myotoxicity induced by venoms of B. jararaca and B. erythromelas. In all models, the extract was evaluated by intraperitoneal route at the doses of 50, 100 and 200 mg/kg, administered 30 minutes prior to injection of the venom (pretreatment protocol). Stains suggestive of the presence of flavonoids: apigenin, luteolin, orientin, isoorientin, vitexin and vitexin-2-O-rhamnoside were detected in the extract by co-CCD. By means of HPLC were identified isoorientin, orientin, vitexin and isovitexin. All tested doses of J. mollissima extract reduced the paw edema induced by the venom with intensity similar to dexamethasone. The aqueous extract of J. mollissima leaves on all evaluated doses, inhibited cell migration induced by B. jararaca and B. erythromelas promoting inhibition of recruitment of mononuclear cells and the polymorphonuclear cells. Local bleeding induced by B. jararaca venom was significantly inhibited by the extract. Both venoms were inhibited by the extract in myotoxic activity. These results indicate that the aqueous extract of J. mollissima leaves have snakebite potential, particularly with respect to local effects, which may justify the use of this plant in traditional medicine and complementary therapy as anti-venom serum.
Resumo:
Snakebites are a serious public health problem in tropical and subtropical countries and Bothrops genus is responsible for the accidents in Brazil and throughout Latin America (90% of cases). The local effects (pain, edema, hemorrhage and myonecrosis) and systemic (cardiovascular alterations, shock and blood clotting disorders) caused by the venom of Bothrops are due to the numerous protein and non-protein components, which are part of the constitution of the poison. The only form of therapy is scientifically validated antivenom serum therapy which, however, is not effective with respect to local effects produced, risk of immunological reactions, high cost and difficult access in some regions. Thus, the search for new alternatives to serum therapy becomes important, and in this context, many medicinal plants have been highlighted by the popular use as antiophidic. Among these plants, we can mention the species Jatropha mollissima (Euphorbiaceae) which has popular use in traditional medicine as antiophidic, anti-inflammatory, antimicrobial and antipyretic. Therefore, this study aims to evaluate the neutralizing potential of local effects induced by the venom of Bothrops erythromelas and Bothrops jararaca with the aqueous extract of the leaves of J. mollissima. The leaf extracts were prepared by decoction, fractionated (by liquid-liquid partition) and characterized by thin layer chromatography (TLC) and High Performance Liquid Chromatography (HPLC). Antiophidic activity of the extract was evaluated in model of paw edema, peritonitis, bleeding and myotoxicity induced by venoms of B. jararaca and B. erythromelas. In all models, the extract was evaluated by intraperitoneal route at the doses of 50, 100 and 200 mg/kg, administered 30 minutes prior to injection of the venom (pretreatment protocol). Stains suggestive of the presence of flavonoids: apigenin, luteolin, orientin, isoorientin, vitexin and vitexin-2-O-rhamnoside were detected in the extract by co-CCD. By means of HPLC were identified isoorientin, orientin, vitexin and isovitexin. All tested doses of J. mollissima extract reduced the paw edema induced by the venom with intensity similar to dexamethasone. The aqueous extract of J. mollissima leaves on all evaluated doses, inhibited cell migration induced by B. jararaca and B. erythromelas promoting inhibition of recruitment of mononuclear cells and the polymorphonuclear cells. Local bleeding induced by B. jararaca venom was significantly inhibited by the extract. Both venoms were inhibited by the extract in myotoxic activity. These results indicate that the aqueous extract of J. mollissima leaves have snakebite potential, particularly with respect to local effects, which may justify the use of this plant in traditional medicine and complementary therapy as anti-venom serum.
Resumo:
CHAPTER II: Snake venoms are a complex mixture of organic and inorganic compounds, proteins and peptides such as aminotransferases, acetylcholinesterase, hyaluronidases, L-amino acid oxidase, phospholipase A2, metalloproteases, serine proteases, lectins, disintegrins, and others. Phospholipase A2 directly or indirectly influence the pathophysiological effect on envenomation, as well as their participation in the digestion of the prey. They have several other activities such as hemolytic indirect action, cardiotoxicity, aggregating of platelets, anticoagulant, edema, myotoxic and inflammatory activities. In this work, we describe the functional characterization of BaltMTx, a PLA2 from Bothrops alternatus that inhibits platelet aggregation and present bactericidal effect. The purification of BaltMTx was carried out through three chromatographic steps (ion-exchange on a DEAE-Sephacel column, followed by hydrophobic chromatography on Phenyl–Sepharose and affinity chromatography on HiTrap™ Heparin HP). The protein was purified to homogeneity as judged by its migration profile in SDS–PAGE stained with coomassie blue, and showed a molecular mass of about 15 kDa under reducing conditions and approximately 25 kDa in non-reducing conditions. BaltMTx showed a rather specific inhibitory effect on platelet aggregation induced by epinephrine in human platelet-rich plasma in a dose-dependent manner, whereas it had little or no effect on platelet aggregation induced by collagen or adenosine diphosphate. BaltMTx also showed antibacterial activity against Staphylococcus aureus and Escherichia coli. High concentrations of BatlMTx stimulated the proliferation of Leishmania (Leishmania) infantum and Leishmania (Viania) braziliensis. BaltMTx induced production of inflammatory mediators such as IL-10, IL-12, TNF-α and NO. BaltMTx could be of medical interest as a new tool for the development of novel therapeutic agents for the prevention and treatment of thrombotic disorders as well as bactericidal agent.
Resumo:
This study reports an investigation of the pharmacological activity, cytotoxicity, and local effects of a liposomal formulation of the novel local anaesthetic ropivacaine (RVC) compared with its plain solution. RVC was encapsulated into large unilamellar vesicles (LUVs) composed of egg phosphatidylcholine, cholesterol and a-tocopherol (4:3:0.07, mole %). Particle size, partition coefficient determination and in-vitro release studies were used to characterize the encapsulation process. Cytotoxicity was evaluated by the tetrazolium reduction test using sciatic nerve Schwann cells in culture. Local anaesthetic activity was assessed by mouse sciatic and rat infraorbital nerve blockades. Histological analysis was performed to verify the myotoxic effects evoked by RVC formulations. Plain (RVCPLAIN) and liposomal RVC (RVCLUV) samples were tested at 0.125%, 0.25% and 0.5% concentrations. Vesicle size distribution showed liposomal populations of 370 and 130 nm (85 and 15%, respectively), without changes after RVC encapsulation. The partition coefficient value was 132 26 and in-vitro release assays revealed a decrease in RVC release rate (1.5 fold, P < 0.001) from liposomes. RVCLUV presented reduced cytotoxicity (P < 0.001) when compared with RVCPLAIN Treatment with RVCLUV increased the duration (P < 0.001) and intensity of the analgesic effects either on sciatic nerve blockade (1.4-1.6 fold) and infraorbital nerve blockade tests (1.5 fold), in relation to RVCPLAIN. Regarding histological analysis, no morphological tissue changes were detected in the area of injection and sparse inflammatory cells were observed in only one of the animals treated with RVCPLAIN or RVCLUV at 0.5%. Despite the differences between these preclinical studies and clinical conditions, we suggest RVCLUV as a potential new formulation, since RVC is a new and safe local anaesthetic agent.
Resumo:
We show that ethyl 2-oxo-2H-chromene-3-carboxylate (EOCC), a synthetic coumarin, irreversibly inhibits phospholipase A(2) (sPLA2) from Crotalus durissus ruruima venom (sPLA2r) with an IC(50) of 3.1 +/- 0.06 nmol. EOCC strongly decreased the V(max) and K(m), and it virtually abolished the enzyme activity of sPLA2r as well as sPLA2s from other sources. The edema induced by 5PLA2r + EOCC was less than that induced by 5PLA2r treated with p-bromophenacyl bromide, which was more efficient at neutralizing the platelet aggregation activity of native 5PLA2r. Native 5PLA2r induced platelet aggregation of 91.54 +/- 9.3%, and sPLA2r +/- EOCC induced a platelet aggregation of 18.56 +/- 6.5%. EOCC treatment also decreased the myotoxic effect of sPLA2r. Mass spectrometry showed that EOCC formed a stable complex with sPLA2r, which increased the mass of native 5PLA2r from 14,299.34 da to 14,736.22 Da. Moreover, the formation of this complex appeared to be involved in the loss of 5PLA2r activity. Our results strongly suggest that EOCC can be used as a pharmacological agent against the 5PLA2 in Crotalus durissus sp. venom as well as other sPLA2s. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Flavonoids, coumarins and other polyphenolic compounds are powerful antioxiants both in hydrophilic and lipophylic environments with diverse pharmacological properties including anti-inflammatory activity. Despite being widely used as powerful therapeutic agents for blood coagulation disorders, more specifically to control some serine protease enzymes, the mechanism of anti-inflammatory activity of coumarins is unknown, unlike that of flavonoids. Although their controlling effect on serine proteases is well acknowledged, their action on secretory phospholipase A2 (sPLA2) remains obscure. The present study describes the interaction between umbelliferone (7-HOC) and the sPLA2 from Crotalus durissus collilineatus venom. In vitro inhibition of sPLA2 enzymatic activity by 7-HOC was estimated using 4N3OBA as substrate, resulting in an irreversible decrease in such activity proportional to 7-HOC concentration. The biophysical interaction between 7-HOC and sPLA2 was examined by fluorescent spectral analysis and circular dichroism studies. Results from both techniques clearly showed that 7-HOC strongly modified the secondary structure of this enzyme and CD spectra revealed that it strongly decreased sPLA2 alphahelical conformation. In addition, two-dimensional electrophoresis indicated an evident difference between HPLC-purified native and 7-HOC-treated sPLA2s, which were used in pharmacological experiments to compare their biological activities. In vivo anti-inflammatory activity was assessed by the sPLA2-induced mouse paw edema model, in which 7-HOC presented an effect similar to those of dexamethasone and cyproheptacline against the pro-inflammatory effect induced by native sPLA2 on the mouse paw edema, mast cell degranulation and skin edema. on the other hand, 7-HOC exhibited a more potent inhibitory effect on sPUL2 than that of p-bromophenacyl bromide (p-BPB). Our data suggest that 7-HOC interacts with sPLA2 and causes some structural modifications that lead to a sharp decrease or inhibition of the edematogenic and myotoxic activities of this enzyme, indicating its potential use to suppress inflammation induced by sPLA2 from the snake venom. (C) 2008 Published by Elsevier Ltd.
Resumo:
Background: Harpalycin 2 (HP-2) is an isoflavone isolated from the leaves of Harpalyce brasiliana Benth., a snakeroot found in northeast region of Brazil and used in folk medicine to treat snakebite. Its leaves are said to be anti-inflammatory. Secretory phospholipases A(2) are important toxins found in snake venom and are structurally related to those found in inflammatory conditions in mammals, as in arthritis and atherosclerosis, and for this reason can be valuable tools for searching new anti-phospholipase A(2) drugs.Methods: HP-2 and piratoxin-III (PrTX-III) were purified through chromatographic techniques. The effect of HP-2 in the enzymatic activity of PrTX-III was carried out using 4-nitro-3-octanoyloxy-benzoic acid as the substrate. PrTX-III induced platelet aggregation was inhibited by HP-2 when compared to aristolochic acid and p-bromophenacyl bromide (p-BPB). In an attempt to elucidate how HP-2 interacts with PrTX-III, mass spectrometry, circular dichroism and intrinsic fluorescence analysis were performed. Docking scores of the ligands (HP-2, aristolochic acid and p-BPB) using PrTX-III as target were also calculated.Results: HP-2 inhibited the enzymatic activity of PrTX-III (IC50 11.34 +/- 0.28 mu g/mL) although it did not form a stable chemical complex in the active site, since mass spectrometry measurements showed no difference between native (13,837.34 Da) and HP-2 treated PrTX-III (13,856.12 Da). A structural analysis of PrTX-III after treatment with HP-2 showed a decrease in dimerization and a slight protein unfolding. In the platelet aggregation assay, HP-2 previously incubated with PrTX-III inhibited the aggregation when compared with untreated protein. PrTX-III chemical treated with aristolochic acid and p-BPB, two standard PLA(2) inhibitors, showed low inhibitory effects when compared with the HP-2 treatment. Docking scores corroborated these results, showing higher affinity of HP-2 for the PrTX-III target (PDB code: 1GMZ) than aristolochic acid and p-BPB. HP-2 previous incubated with the platelets inhibits the aggregation induced by untreated PrTX-III as well as arachidonic acid.Conclusion: HP-2 changes the structure of PrTX-III, inhibiting the enzymatic activity of this enzyme. In addition, PrTX-III platelet aggregant activity was inhibited by treatment with HP-2, p-BPB and aristolochic acid, and these results were corroborated by docking scores.
Resumo:
BjVIII is a new myotoxic Lys49-PLA2 isolated from Bothrops jararacussu venom that exhibits atypical effects on human platelet aggregation. To better understand the mode of action of BjVIII, crystallographic studies were initiated. Two crystal forms were obtained, both containing two molecules in the asymmetric unit (ASU). Synchrotron radiation diffraction data were collected to 2.0 angstrom resolution and 1.9 angstrom resolution for crystals belonging to the space group P2(1)2(1)2(1) (a = 48.4 angstrom, b = 65.3 angstrom, c = 84.3 angstrom) and space group P3(1)21 (a = b = 55.7 angstrom, c = 127.9 angstrom), respectively. Refinement is currently in progress and the refined structures are expected to shed light on the unusual platelet aggregation activity observed for BjVIII.