998 resultados para MYOSIN-V
Resumo:
Considering voltage stability as a static viability problem, this paper takes a particular concern of Q-V characteristics and reflects on certain notions that do not seem to have been explicitly mentioned or derived in the existing documented literature. The equations of Q-V characteristics are rederived in exactness, some salient points on the curve are discovered and analysed. The results of the analysis are illustrated through a case study
Resumo:
The fluorescence quenching studies of carboxamide namely (E)-N-(3-Chlorophenyl)-2-(3,4,5-trimethoxybenzylideneamino)-4,5,6,7 tetrahydrobenzob]thiophene-3-carboxamide ENCTTTC] by aniline and carbon tetrachloride in six different solvents namely toluene, cyclohexane, n-hexane, n-heptane, n-decane and n-pentane have been carried out at room temperature with a view to understand the quenching mechanisms. The Stern-Volmer (S-V) plots have been found to be nonlinear with a positive deviation for all the solvents studied. In order to interpret these results we have invoked the ground state complex formation and sphere of action static quenching models. Using these models various quenching rate parameters have been determined. The magnitudes of these parameters suggest that sphere of action static quenching model agrees well with the experimental results. Hence the positive deviation is attributed to the static and dynamic quenching. Further, with the use of Finite Sink approximation model, it was possible to check these bimolecular reactions as diffusion-limited and to estimate independently distance parameter R' and mutual diffusion coefficient D. Finally an effort has been made to correlate the values of R' and D with the values of the encounter distance R and the mutual coefficient D determined using the Edward's empirical relation and Stokes Einstein relation. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The roles of myosin during muscle contraction are well studied, but how different domains of this protein are involved in myofibril assembly in vivo is far less understood. The indirect flight muscles (IFMs) of Drosophila melanogaster provide a good model for understanding muscle development and function in vivo. We show that two missense mutations in the rod region of the myosin heavy-chain gene, Mhc, give rise to IFM defects and abnormal myofibrils. These defects likely result from thick filament abnormalities that manifest during early sarcomere development or later by hypercontraction. The thick filament defects are accompanied by marked reduction in accumulation of flightin, a myosin binding protein, and its phosphorylated forms, which are required to stabilise thick filaments. We investigated with purified rod fragments whether the mutations affect the coiled-coil structure, rod aggregate size or rod stability. No significant changes in these parameters were detected, except for rod thermodynamic stability in one mutation. Molecular dynamics simulations suggest that these mutations may produce localised rod instabilities. We conclude that the aberrant myofibrils are a result of thick filament defects, but that these in vivo effects cannot be detected in vitro using the biophysical techniques employed. The in vivo investigation of these mutant phenotypes in IFM development and function provides a useful platform for studying myosin rod and thick filament formation generically, with application to the aetiology of human myosin rod myopathies. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In view of the importance of the suicides in the high temperature applications, the diffusion behaviour is compared in different systems for two types of silicides, XSi2 and X5Si3 (X=Nb, Mo, V). Atomic mechanism of diffusion and defects present in the structure are discussed. In both the phases, Si has faster diffusion rate than the metal species. This is expected from the nearest neighbour (NN) bonds present in the XSi2 phase but rather unusual in the X5Si3 phase. Relative mobilities of the species calculated indicate the presence of high concentration of Si antisites. Moreover, the concentration of the defects is different in different systems to find different diffusion rates.
Resumo:
Recently nano scale zero valent iron particles (nZVI) have been considered as smart adsorbent for environmental and groundwater remediation. Although several synthetic methods are available for the preparation of nZVI, air stable nZVI are not available for remediation works. Further, challenges demand synthesis of nZVI without stabilizers and capping agents. A modified methodology for the synthesis of air stable nZVI has been developed without any capping agents and characterized by powder X-Ray Diffraction (XRD), Scanning Electron Microscopy Energy-dispersive X-Ray (SEM-EDS), Transmission Electron Microscopy (TEM) and X-Ray Photoelectron Spectroscopy (XPS). The results of the present study suggest that the synthetic nZVI are air-stable over a period of one year and consists of particles of 30-40 nm in diameter. Although a layer of less than 3 am thick oxide/hydroxide is observed by TEM and XPS, it appears to be due to oxidation of outer surface during analysis. Adsorption study has shown that the synthetic nZVI are more effective adsorbent than the commercial nZVI and can remove simultaneously arsenite As-III] and arsenate As-V] from water without prior reduction of As-V to As-III. The removal process is adsorptive rather than precipitative and the removal of As-III is greater than that of As-V.
Resumo:
A 12 V Substrate-Integrated PbO2-Activated Carbon hybrid ultracapacitor (SI-PbO2-AC HUCs) with silica-gel sulfuric acid electrolyte is developed and performance tested. The performance of the silica-gel based hybrid ultracapacitor is compared with flooded and AGM-based HUCs. These HUCs comprise substrate-integrated PbO2 (SI-PbO2) as positive electrodes and high surface-area activated carbon with dense graphite-sheet substrate as negative electrodes. 12 V SI-PbO2-AC HUCs with flooded, AGM and gel electrolytes are found to have capacitance values of 308 F, 184 F, and 269 F at C-rate and can be pulse charged and discharged for 100,000 cycles with only a nominal decrease in their capacitance values. The best performance is exhibited by gel-electrolyte HUCs.
Resumo:
The nucleus of the eukaryotic cell functions amidst active cytoskeletal �laments, but its response to the stresses carried by these �laments is largely unexplored. We report here the results of studies of the translational and rotational dynamics of the nuclei of single �broblast cells, with the e�ects of cell migration suppressed by plating onto �bronectin-coated micro-fabricated patterns. Patterns of the same area but di�erent shapes and/or aspect ratio were used to study the e�ect of cell geometry on the dynamics. On circles, squares and equilateral triangles, the nucleus undergoes persistent rotational motion, while on high-aspect-ratio rectangles of the same area it moves only back and forth. The circle and the triangle showed respectively the largest and the smallest angular speed. We show that our observations can be understood through a hydrodynamic approach in which the nucleus is treated as a highly viscous inclusion residing in a less viscous uid of orientable �laments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and persistence time of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic ow around the nucleus, with pro�le and magnitude consistent with the results of our theoretical approach. Coherent intracellular ows and consequent nuclear rotation thus appear to be a generic property that cells must balance by speci�c mechanisms in order to maintain nuclear homeostasis
Resumo:
Raman spectroscopic study on Oxyfluoro Vanadate glasses containing various proportions of lithium fluoride and rubidium fluoride was carried out to see an effect of mixture of alkali on vanadium-oxygen (V-O) bond length. Glasses with a general formula 40V(2)O(5) - 30BaF(2) - (30 - x) LiF - xRbF (x = 0-30) were prepared. Room temperature Raman spectra of these glass samples were recorded in back scattering geometry. The data presented is in ``reduced Raman intensity'' form with maximum peak scaled to 100. We have used v = Aexp(BR), where A and B are fitting parameters, to correlate the bond length R with Raman scattering frequency v. We observed that variation in bond length and its distribution about a most probable value can be correlated to the alkali environment present in these glasses. We also observed that all rubidium environment around the network forming unit is more homogenous than all lithium environment.
Resumo:
A porous carbon foam (CF) electrode modified with a reduced graphene oxide-Ag (rGO-Ag) nanocomposite has been fabricated to purify water. It can perform as an antibacterial device by killing pathogenic microbes with the aid of a 1.5 V battery, with very little power consumption. The device is recycled ten times with good performance for long term usage. It is shown that the device may be implemented as a fast water purifier to deactivate the pathogens in drinking water.
Resumo:
Four ``V'' shaped 1,8-naphthalimides (1-4) have been synthesized and their fluorescence quantum-yields correlated to their molecular flexibility. The correlation was used for detection of Hg(II) via a chemodosimetric approach. 4 was found to be an AIE active molecule with the formation of fluorescent nanoaggregates.
Resumo:
Group VB and VIB M-Si systems are considered to show an interesting pattern in the diffusion of components with the change in atomic number in a particular group (M = V, Nb, Ta or M = Mo, W, respectively). Mainly two phases, MSi2 and M5Si3 are considered for this discussion. Except for Ta-silicides, the activation energy for the integrated diffusion of MSi2 is always lower than M5Si3. In both phases, the relative mobilities measured by the ratio of the tracer diffusion coefficients, , decrease with an increasing atomic number in the given group. If determined at the same homologous temperature, the interdiffusion coefficients increase with the atomic number of the refractory metal in the MSi2 phases and decrease in the M5Si3 ones. This behaviour features the basic changes in the defect concentrations on different sublattices with a change in the atomic number of the refractory components.
Resumo:
Three new V-shaped boryl-BODIPY dyads (1-3) were synthesized and structurally characterized. Compounds 1-3 are structurally close molecular siblings differing only in the number of methyl substituents on the BODIPY moiety that were found to play a major role in determining their photophysical behavior. The dyads show rare forms of multiple-channel emission characteristics arising from different extents of electronic energy transfer (EET) processes between the two covalently linked fluorescent chromophores (borane and BODIPY units). Insights into the origin and nature of their emission behavior were gained from comparison with closely related model molecular systems and related photophysical investigations. Because of the presence of the Lewis acidic triarylborane moiety, the dyads function as highly selective and sensitive fluoride sensors with vastly different response behaviors. When fluoride binds to the tricoordinate borane center, dyad 1 shows gradual quenching of its BODIPY-dominated emission due to the ceasing of the (borane to BODIPY) EET process. Dyad 2 shows a ratiometric fluorescence response for fluoride ions. Dyad 3 forms fluoride-induced nanoaggregates that result in fast and effective quenching of its fluorescence intensity just for similar to 0.3 ppm of analyte (i.e., 0.1 equiv 0.26 ppm of fluoride). The small structural alterations in these three structurally close dyads (1 - 3) result in exceptionally versatile and unique photophysical behaviors and remarkably diverse responses toward a single analyte, i.e., fluoride ion.