954 resultados para MOTOR-EVOKED POTENTIAL
Resumo:
Preattentive perception of occasional deviating stimuli in the stream of standard stimuli can be recorded with cognitive event-related potential (ERP) mismatch negativity (MMN). The earlier detection of stimuli at the auditory cortex can be examined with N1 and P2 ERPs. The MMN recording does not require co-operation, it correlates with perceptual threshold, and even complex sounds can be used as stimuli. The aim of this study was to examine different aspects that should be considered when measuring discrimination of hearing with ERPs. The MMN was found to be stimulusintensity- dependent. As the intensity of sine wave stimuli was increased from 40 to 80 dB HL, MMN mean amplitudes increased. The effect of stimulus frequency on the MMN was studied so that the pitch difference would be equal in each stimulus block according to the psychophysiological mel scale or the difference limen of frequency (DLF). However, the blocks differed from each other. The contralateral white noise masking (50 dB EML) was found to attenuate the MMN amplitude when the right ear was stimulated. The N1 amplitude was attenuated and, in contrast, P2 amplitude was not affected by contralateral white noise masking. The perception and production of vowels by four postlingually deafened patients with a cochlear implant were studied. The MMN response could be elicited in the patient with the best vowel perception abilities. The results of the studies show that concerning the MMN recordings, the stimulus parameters and recording procedure design have a great influence on the results.
Resumo:
Gastrointestinal surgical procedures have the potential to disrupt motor activity in various organs of the gastrointestinal tract or, indeed, throughout the entire alimentary canal. Several of these motor effects have important clinical consequences and have also served to advance our understanding of the regulation of gastrointestinal motor activity. This review will focus, in particular, on the effects of surgery on the small intestine, and will attempt to emphasize the implications of these studies for our understanding of small intestinal motility, in general.
Resumo:
Estragole, a relatively nontoxic terpenoid ether, is an important constituent of many essential oils with widespread applications in folk medicine and aromatherapy and known to have potent local anesthetic activity. We investigated the effects of estragole on the compound action potential (CAP) of the rat sciatic nerve. The experiments were carried out on sciatic nerves dissected from Wistar rats. Nerves, mounted in a moist chamber, were stimulated at a frequency of 0.2 Hz, with electric pulses of 50-100-µs duration at 10-20 V, and evoked CAP were monitored on an oscilloscope and recorded on a computer. CAP control parameters were: peak-to-peak amplitude (PPA), 9.9 ± 0.55 mV (N = 15), conduction velocity, 92.2 ± 4.36 m/s (N = 15), chronaxy, 45.6 ± 3.74 µs (N = 5), and rheobase, 3.9 ± 0.78 V (N = 5). Estragole induced a dose-dependent blockade of the CAP. At 0.6 mM, estragole had no demonstrable effect. At 2.0 and 6.0 mM estragole, PPA was significantly reduced at the end of 180-min exposure of the nerve to the drug to 85.6 ± 3.96 and 13.04 ± 1.80% of control, respectively. At 4.0 mM, estragole significantly altered PPA, conduction velocity, chronaxy, and rheobase (P <= 0.05, ANOVA; N = 5) to 49.3 ± 6.21 and 77.7 ± 3.84, 125.9 ± 10.43 and 116.7 ± 4.59%, of control, respectively. All of these effects developed slowly and were reversible upon a 300-min wash-out. The data show that estragole dose-dependently blocks nerve excitability.
Resumo:
The spinal muscular atrophies (SMA) or hereditary motor neuronopathies result from the continuous degeneration and death of spinal cord lower motor neurons, leading to progressive muscular weakness and atrophy. We describe a large Brazilian family exhibiting an extremely rare, late-onset, dominant, proximal, and progressive SMA accompanied by very unusual manifestations, such as an abnormal sweating pattern, and gastrointestinal and sexual dysfunctions, suggesting concomitant involvement of the autonomic nervous system. We propose a new disease category for this disorder, `hereditary motor and autonomic neuronopathy', and attribute the term, `survival of motor and autonomic neurons 1' (SMAN1) to the respective locus that was mapped to a 14.5 cM region on chromosome 20q13.2-13.3 by genetic linkage analysis and haplotype studies using microsatellite polymorphic markers. This locus lies between markers D20S120 and D20S173 showing a maximum LOD score of 4.6 at D20S171, defining a region with 33 known genes, including several potential candidates. Identifying the SMAN1 gene should not only improve our understanding of the molecular mechanisms underlying lower motor neuron diseases but also help to clarify the relationship between motor and autonomic neurons.
Resumo:
This study compared the effectiveness of the multifocal visual evoked cortical potentials (mfVEP) elicited by pattern pulse stimulation with that of pattern reversal in producing reliable responses (signal-to-noise ratio >1.359). Participants were 14 healthy subjects. Visual stimulation was obtained using a 60-sector dartboard display consisting of 6 concentric rings presented in either pulse or reversal mode. Each sector, consisting of 16 checks at 99% Michelson contrast and 80 cd/m² mean luminance, was controlled by a binary m-sequence in the time domain. The signal-to-noise ratio was generally larger in the pattern reversal than in the pattern pulse mode. The number of reliable responses was similar in the central sectors for the two stimulation modes. At the periphery, pattern reversal showed a larger number of reliable responses. Pattern pulse stimuli performed similarly to pattern reversal stimuli to generate reliable waveforms in R1 and R2. The advantage of using both protocols to study mfVEP responses is their complementarity: in some patients, reliable waveforms in specific sectors may be obtained with only one of the two methods. The joint analysis of pattern reversal and pattern pulse stimuli increased the rate of reliability for central sectors by 7.14% in R1, 5.35% in R2, 4.76% in R3, 3.57% in R4, 2.97% in R5, and 1.78% in R6. From R1 to R4 the reliability to generate mfVEPs was above 70% when using both protocols. Thus, for a very high reliability and thorough examination of visual performance, it is recommended to use both stimulation protocols.
Resumo:
Pumping, fan and compressor systems consume most of the motor electricity power in both the industrial and services sectors. A variable speed drive brings relevant improvements in a fluid system leading to energy saving that further on can be translated into Mtons reduction of CO 2 emissions. Standards and regulations are being adopted for fluid handling systems to limit the less efficiency pumps out of the European market on the coming years and a greater potential in energy savings is dictated by the Energy Efficiency Index (EEI) requirements for the whole pumping system and integrated pumps. Electric motors also have an International Efficiency (IE) classification in order to introduce higher efficiency motors into the market. In this thesis, the applicability of mid-size common electric motor types to industrial pumping system took place comparing the motor efficiency characteristics with each other and by analyzing the effect of motor dimensioning on the pumping system and its impact in the energy consumption.
Resumo:
We explored the potential mediating influence of physical fitness on the relationship between academic performance and motor proficiency in children. 1864 students (F:926, M:938, age 11.91 (SD:0.34). Academic achievement was derived from an average of standardized tests of reading, writing, and math. The Bruininks-Oseretsky Test of Motor Performance (short-form) determined motor proficiency. Fitness (peak oxygen uptake) was established with the Léger 20-m Shuttle Run Test. OLS regression identified several significant predictors of academic performance. After controlling for age (p=0.0135), gender (p<0.0001), and parental education (p<0.0001), motor proficiency (p<0.0001), was significant. After adding physical fitness (p=0.0030) to the model the effect of motor proficiency remained significant however the point estimate was reduced from 0.0034 (p<0.0001) to 0.0026 (p<0.0001). These results suggest that physical fitness plays a mediating role on the relationship between academic performance and motor proficiency although both aerobic fitness and motor proficiency have independent roles.
Resumo:
Le syndrome du X fragile (SXF) est la première cause héréditaire de déficience intellectuelle et également la première cause monogénique d’autisme. Le SXF est causé par l'expansion de la répétition du nucléotide CGG sur le gène FMR1, ce qui empêche l’expression de la protéine FMRP. L’absence du FMRP mène à une altération du développement structurel et fonctionnel de la synapse, ce qui empêche la maturation des synapses induite par l’activité et l’élagage synaptique, qui sont essentiels pour le développement cérébral et cognitif. Nous avons investigué les potentiels reliés aux événements (PRE) évoqués par des stimulations fondamentales auditives et visuelles dans douze adolescents et jeunes adultes (10-22) atteints du SXF, ainsi que des participants contrôles appariés en âge chronologique et développemental. Les résultats indiquent un profil des PRE altéré, notamment l’augmentation de l’amplitude de N1 auditive, par rapport aux deux groupes contrôle, ainsi que l’augmentation des amplitudes de P2 et N2 auditifs et de la latence de N2 auditif. Chez les patients SXF, le traitement sensoriel semble être davantage perturbé qu’immature. En outre, la modalité auditive semble être plus perturbée que la modalité visuelle. En combinaison avec des résultats anatomique du cerveau, des mécanismes biochimiques et du comportement, nos résultats suggèrent une hyperexcitabilité du système nerveux dans le SXF.
Resumo:
The primary objective of this research study is to determine if various body positions for ocular vestibular evoked myogenic potential (oVEMP) testing demonstrate differentiation of the saccule and utricle through threshold responses.
Resumo:
Children may be at higher risk than adults from pesticide exposure, due to their rapidly developing physiology, unique behavioral patterns, and interactions with the physical environment. This preliminary study conducted in Ecuador examines the association between household and environmental risk factors for pesticide exposure and neurobehavioral development. We collected data over 6 months in the rural highland region of Cayambe, Ecuador (2003–2004). Children age 24–61 months residing in 3 communities were assessed with the Ages and Stages Questionnaire and the Visual Motor Integration Test. We gathered information on maternal health and work characteristics, the home and community environment, and child characteristics. Growth measurements and a hemoglobin finger-prick blood test were obtained. Multiple linear regression analyses were conducted. Current maternal employment in the flower industry was associated with better developmental scores. Longer hours playing outdoors were associated with lower gross and fine motor and problem solving skills. Children who played with irrigation water scored lower on fine motor skills (8% decrease; 95% confidence interval 9.31 to 0.53), problem-solving skills (7% decrease; 8.40 to 0.39), and Visual Motor Integration test scores (3% decrease; 12.00 to 1.08). These results suggest that certain environmental risk factors for exposure to pesticides may affect child development, with contact with irrigation water of particular concern. However, the relationships between these risk factors and social characteristics are complex, as corporate agriculture may increase risk through pesticide exposure and environmental contamination, while indirectly promoting healthy development by providing health care, relatively higher salaries, and daycare options.
Resumo:
The study of motor unit action potential (MUAP) activity from electrornyographic signals is an important stage on neurological investigations that aim to understand the state of the neuromuscular system. In this context, the identification and clustering of MUAPs that exhibit common characteristics, and the assessment of which data features are most relevant for the definition of such cluster structure are central issues. In this paper, we propose the application of an unsupervised Feature Relevance Determination (FRD) method to the analysis of experimental MUAPs obtained from healthy human subjects. In contrast to approaches that require the knowledge of a priori information from the data, this FRD method is embedded on a constrained mixture model, known as Generative Topographic Mapping, which simultaneously performs clustering and visualization of MUAPs. The experimental results of the analysis of a data set consisting of MUAPs measured from the surface of the First Dorsal Interosseous, a hand muscle, indicate that the MUAP features corresponding to the hyperpolarization period in the physisiological process of generation of muscle fibre action potentials are consistently estimated as the most relevant and, therefore, as those that should be paid preferential attention for the interpretation of the MUAP groupings.
Resumo:
A person with a moderate or severe motor disability will often use specialised or adapted tools to assist their interaction with a general environment. Such tools can assist with the movement of a person's arms so as to facilitate manipulation, can provide postural supports, or interface to computers, wheelchairs or similar assistive technologies. Designing such devices with programmable stiffness and damping may offer a better means for the person to have effective control of their surroundings. This paper addresses the possibility of designing some assistive technologies using impedance elements that can adapt to the user and the circumstances. Two impedance elements are proposed. The first, based on magnetic particle brakes, allows control of the damping coefficient in a passive element. The second, based on detuning the P-D controller in a servo-motor mechanism, allows control of both stiffness and damping. Such a mechanical impedance can be modulated to the conditions imposed by the task in hand. The limits of linear theory are explored and possible uses of programmable impedance elements are proposed.
Resumo:
Apraxia of speech (AOS) is typically described as a motor-speech disorder with clinically well-defined symptoms, but without a clear understanding of the underlying problems in motor control. A number of studies have compared the speech of subjects with AOS to the fluent speech of controls, but only a few have included speech movement data and if so, this was primarily restricted to the study of single articulators. If AOS reflects a basic neuromotor dysfunction, this should somehow be evident in the production of both dysfluent and perceptually fluent speech. The current study compared motor control strategies for the production of perceptually fluent speech between a young woman with apraxia of speech (AOS) and Broca’s aphasia and a group of age-matched control speakers using concepts and tools from articulation-based theories. In addition, to examine the potential role of specific movement variables on gestural coordination, a second part of this study involved a comparison of fluent and dysfluent speech samples from the speaker with AOS. Movement data from the lips, jaw and tongue were acquired using the AG-100 EMMA system during the reiterated production of multisyllabic nonwords. The findings indicated that although in general kinematic parameters of fluent speech were similar in the subject with AOS and Broca’s aphasia to those of the age-matched controls, speech task-related differences were observed in upper lip movements and lip coordination. The comparison between fluent and dysfluent speech characteristics suggested that fluent speech was achieved through the use of specific motor control strategies, highlighting the potential association between the stability of coordinative patterns and movement range, as described in Coordination Dynamics theory.
Resumo:
A growing awareness of the potential for machine-mediated neurorehabilitation has led to several novel concepts for delivering these therapies. To get from laboratory demonstrators and prototypes to the point where the concepts can be used by clinicians in practice still requires significant additional effort, not least in the requirement to assess and measure the impact of any proposed solution. To be widely accepted a study is required to use validated clinical measures but these tend to be subjective, costly to administer and may be insensitive to the effect of the treatment. Although this situation will not change, there is good reason to consider both clinical and mechanical assessments of recovery. This article outlines the problems in measuring the impact of an intervention and explores the concept of providing more mechanical assessment techniques and ultimately the possibility of combining the assessment process with aspects of the intervention.
Resumo:
Agonists of protease-activated receptor 2 (PAR(2)) evoke hyperexcitability of dorsal root ganglia (DRG) neurons by unknown mechanisms. We examined the cellular mechanisms underlying PAR(2)-evoked hyperexcitability of mouse colonic DRG neurons to determine their potential role in pain syndromes such as visceral hyperalgesia. Colonic DRG neurons were identified by injecting Fast Blue and DiI retrograde tracers into the mouse colon. Using immunofluorescence, we found that DiI-labelled neurons contained PAR(2) immunoreactivity, confirming the presence of receptors on colonic neurons. Whole-cell current-clamp recordings of acutely dissociated neurons demonstrated that PAR(2) activation with a brief application (3 min) of PAR(2) agonists, SLIGRL-NH(2) and trypsin, evoked sustained depolarizations (up to 60 min) which were associated with increased input resistance and a marked reduction in rheobase (50% at 30 min). In voltage clamp, SLIGRL-NH(2) markedly suppressed delayed rectifier I(K) currents (55% at 10 min), but had no effect on the transient I(A) current or TTX-resistant Na(+) currents. In whole-cell current-clamp recordings, the sustained excitability evoked by PAR(2) activation was blocked by the PKC inhibitor, calphostin, and the ERK(1/2) inhibitor PD98059. Studies of ERK(1/2) phosphorylation using confocal microscopy demonstrated that SLIGRL-NH(2) increased levels of immunoreactive pERK(1/2) in DRG neurons, particularly in proximity to the plasma membrane. Thus, activation of PAR(2) receptors on colonic nociceptive neurons causes sustained hyperexcitability that is related, at least in part, to suppression of delayed rectifier I(K) currents. Both PKC and ERK(1/2) mediate the PAR(2)-induced hyperexcitability. These studies describe a novel mechanism of sensitization of colonic nociceptive neurons that may be implicated in conditions of visceral hyperalgesia such as irritable bowel syndrome.