998 resultados para MOTOR PROTEINS
Resumo:
The progress of science in search of new techniques of the nerve regeneration and the functional repair in reinnervated muscle has been the target of many researchers around the world. Consequently, nerves and muscles in different body segments asked for more enlightenment of their morphology, their interrelation with other anatomic structures and their peculiarities. One of the most significant areas that need deeper studies is the region of the head and neck, since they are often affected by important pathologies. In order to offer the researcher`s community a morphological myoneural interaction model, this study elected the levator labii superioris muscle and its motor nerve, the buccal branch of the facial nerve (VII pair) not only for its special characteristics, but also its value on the facial expression. The rat was chosen for this investigation for being easy to obtain, to keep, to manipulate and to compare this experiment with many others studies previously published. The techniques used were Mesoscopic (dissection), histoenzymologic and morphometric ones. In the results the muscle proved to have a predominance of fast twich fibers (FG and FOG) and superficial location, with a proximal bone and a distal cutaneous insertion. Its motor nerve, the buccal branch of the facial nerve (VII pair), breaks through the muscle belly into its deep face, and comprised a heterogeneous group of myelinic nerve fibers disposed in a regular form in all fascicle. Near the motor point, the nerve showed to be composed of two fascicles with different sizes. Due to the small nerve dimensions, the nerve fibers have a smaller diameter if compared to the motor nerve of pectineus muscle of the cat. Further studies with neural tracers have already had a start in order to provide more information about the distribution and the architecture of these fibers.
Resumo:
The hypothesis that growth hormone (GH) up-regulates the expression of enzymes, matrix proteins, and differentiation markers involved in mineralization of tooth and bone matrices was tested by the treatment of Lewis dwarf rats with GH over 5 days, The molar teeth and associated alveolar bone were processed for immunohistochemical demonstration of bone morphogenetic proteins 2 and 4 (BMP-2 and -4), bone morphogenetic protein type IA receptor (BMPR-IA), bone alkaline phosphatase (ALP), osteocalcin (OC), osteopontin (OPN), bone sialoprotein (BSP), and E11 protein (E11), The cementoblasts, osteoblasts, and periodontal ligament (PDL) cells responded to GH by expressing BMP-2 and -4, BMPR-IA, ALP, OC, and OPN and increasing the numbers of these cells. No changes were found in patterns of expression of the late differentiation markers BSP and E11 in response to GH, Thus, GH evokes expression of bone markers of early differentiation in cementoblasts, PDL cells, and osteoblasts of the periodontium. We propose that the induction of BMP-2 and -4 and their receptor by GH compliments the role of GH-induced insulin-like growth factor 1 (IGF-1) in promoting bone and tooth root formation.
Resumo:
Aims: Epstein-Barr virus (EBV) and its associated proteins may be protective against the occurrence of apoptosis that would normally inhibit cancer development and progression. Alternatively, the viral infection may cause altered or mutated expression of oncogenes or tumour suppressor genes that are necessary for tumour development. an action that may also involve apoptosis, In this study, a relationship was sought between occurrence of EBV infection, expression of apoptosis-associated proteins (tumour suppressor gene p53 and oncogenes c-myc and bcl-2) and levels of cell death (apoptosis or necrosis) in 119 cases of gastric carcinoma. Methods and results: The EBV status of the gastric carcinomas (using the EBV-encoded small RNA I (EBER-1) and in-situ hybridization), stage and grade of tumour and sex of patients were compared for bcl-2, p53 and c-myc expression patterns. EBER-1 was detected in approximately 20% of cases studied. There was no significant correlation between levels of cell death in the tumour tissue and EBV status. In the protein analyses, development and progression of gastric carcinoma, with or without EBV infection. was independent of bcl-2 expression. However, in gastric cancers with EBV infection, p53 overexpression was inhibited and c-myc expression was increased in early stage cancers, in comparison with decreased c-myc expression in late stage cancers. Conclusions: The p53 and c-myc expression patterns indicate that EBV-infected gastric carcinomas are less likely to have a natural regression via apoptosis at an early stage and explain, in part, the resistance to treatment of late stage of gastric cancers.
Resumo:
Strategies to promote bone repair have included exposure of cells to growth factor (GF) preparations from blood that generally include proteins as part of a complex mixture. This study aimed to evaluate the effects of such a mixture on different parameters of the development of the osteogenic phenotype in vitro. Osteoblastic cells were obtained by enzymatic digestion of human alveolar bone and cultured under standard osteogenic conditions until subconfluence. They were subcultured on Thermanox coverslips up to 14 days. Treated cultures were exposed during the first 7 days to osteogenic medium supplemented with a GFs + proteins mixture containing the major components found in platelet extracts [plate I et-derived growth factor-BB, transforming growth factor (TGF)-beta 1, TGF-beta 2, albumin, fibronectin, and thrombospondin] and to osteogenic medium alone thereafter. Control cultures were exposed only to the osteogenic medium. Treated cultures exhibited a significantly higher number of adherent cells from day 4 onward and of cycling cells at days 1 and 4, weak alkaline phosphatase (ALP) labeling, and significantly decreased levels of ALP activity and mRNA expression. At day 14, no Alizarin red-stained nodular areas were detected in cultures treated with GFs + proteins. Results were confirmed in the rat calvaria-derived osteogenic cell culture model. The addition of bone morphogenetic protein 7 or growth and differentiation factor 5 to treated cultures upregulated Runx2 and ALP mRNA expression, but surprisingly, ALP activity was not restored. These results showed that a mixture of GFs + proteins affects the development of the osteogenic phenotype both in human and rat cultures, leading to an increase in the number of cells, but expressed a less differentiated state.
Resumo:
This is a study in the rat of the distribution of specific neurotransmitters in neurones projecting from the substantia nigra reticulata (SNR) to the ventrolateral (VL) and ventromedial (VM) thalamic nuclei. Individual axons projecting from the SNR to these thalamic nuclei have also been reconstructed following small injection of the anterograde tracer dextran biotin into the the SNR. Analysis of reconstructions revealed two populations of SNR neurones projecting onto the VL and VM thalamic nuclei. One group projects directly onto the VM and VL, and the other projects to the VM/VL and to the parafascicular nucleus. In another set of experiments Fluoro-Gold was injected into the VL/VM to label SNR projection neurones retrogradely, and immunohistochemistry was performed to determine the distribution of choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT), gamma -aminobutyric acid (GABA), and glutamate in Fluoro-Gold-labelled SNR projection neurones. Most SNR-VL/VM thalamic projection neurones were immunoreactive to acetylcholine or glutamate, whereas only 25% of the projection neurones were found to be immunoreactive to GABA. (C) 2001 Wiley-Liss, Inc.
Resumo:
We wished to identify the different types of retinal neurons on the basis of their content of neuroactive substances in both larval tiger salamander and mudpuppy retinas, favored species for electrophysiological investigation. Sections and wholemounts of retinas were labeled by immunocytochemical methods to demonstrate three calcium binding protein species and the common neurotransmitters, glycine, GABA and acetylcholine. Double immunostained sections and single labeled wholemount retinas were examined by confocal microscopy. Immunostaining patterns appeared to be the same in salamander and mudpuppy. Double and single cones, horizontal cells, some amacrine cells and ganglion cells were strongly calbindin-immunoreactive (IR). Calbindin-IR horizontal cells colocalized GABA. Many bipolar cells, horizontal cells, some amacrine cells and ganglion cells were strongly calretinin-IR. One type of horizontal cell and an infrequently occurring amacrine cell were parvalbumin-IR. Acetylcholine as visualized by ChAT-immunoreactivity was seen in a mirror-symmetric pair of amacrine cells that colocalized GABA and glycine. Glycine and GABA colocalized with calretinin, calbindin and occasionally with parvalbumin in amacrine cells. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Aberrant movement patterns and postures are obvious to clinicians managing patients with musculoskeletal pain. However, some changes in motor function that occur in the presence of pain are less apparent. Clinical and basic science investigations have provided evidence of the effects of nociception on aspects of motor function. Both increases and decreases in muscle activity have been shown, along with alterations in neuronal control mechanisms, proprioception, and local muscle morphology. Various models have been proposed in an attempt to provide an explanation for some of these changes. These include the vicious cycle and pain adaptation models. Recent research has seen the emergence of a new model in which patterns of muscle activation and recruitment are altered in the presence of pain (neuromuscular activation model). These changes seem to particularly affect the ability of muscles to perform synergistic functions related to maintaining joint stability and control. These changes are believed to persist into the period of chronicity. This review shows current knowledge of the effect of musculoskeletal pain on the motor system and presents the various proposed models, in addition to other shown effects not covered by these models. The relevance of these models to both acute and chronic pain is considered. It is apparent that people experiencing musculoskeletal pain exhibit complex motor responses that may show some variation with the time course of the disorder. (C) 2001 by the American Pain Society.
Resumo:
Recent findings that spinal manual therapy (SMT) produces concurrent hypoalgesic and sympathoexcitatory effects have led to the proposal that SMT may exert its initial effects by activating descending inhibitory pathways from the dorsal periaqueductal gray area of the midbrain (dPAG). In addition to hypoalgesic and sympathoexcitatory effects, stimulation of the dPAG in animals has been shown to hal e a facilitatory effect on motor activity. This study sought to further investigate the proposal regarding SMT and the FAG by including a test of motor function in addition to the variables previously investigated, Using a condition randomised, placebo-controlled, double blind, repeated measures design, 30 subjects with mid to lon er cervical spine pain of insidious onset participated in the study. The results indicated that the cervical mobilisation technique produced a hypoalgesic effect as revealed by increased pressure pain thresholds on the side of treatment (P = 0.0001) and decreased resting visual analogue scale scores (P = 0.049). The treatment technique also produced a sympathoexcitatory effect with an increase in skin conductance (P < 0.002) and a decrease in skin temperature (P = < 0.02). There was a decrease in superficial neck flexor muscle activity (P < 0.0002) at the lower levels of a staged cranio-cervical flexion test. This could imply facilitation of the deep neck flexor muscles with a decreased need for co-activation of the superficial neck flexors, The combination of all findings,would support the proposal that SMT may, at least initially, exert part of its influence via activation of the PAG, (C) 2000 Harcourt Publishers Ltd.
Resumo:
The Ras GTPases operate as molecular switches that link extracellular stimuli with a diverse range of biological outcomes. Although many studies have concentrated on the protein-protein interactions within the complex signaling cascades regulated by Ras, it is becoming clear that the spatial orientation of different Ras isoforms within the plasma membrane is also critical for their function. H-Ras, N-Ras and K-Ras use different membrane anchors to attach to the plasma membrane. Recently it has been shown that these anchors also act as trafficking signals that direct palmitoylated H-Ras and N-Ras through the exocytic pathway to the cell surface but divert polybasic K-Ras around the Golgi to the plasma membrane via an as yet-unidentified-route. Once at the plasma membrane, H-Ras and :K-Ras operate in different microdomains. K-Ras is localized predominantly to the disordered plasma membrane, whereas H-Ras exists in a GTP-regulated equilibrium between disordered plasma membrane and cholesterol-rich lipid rafts. These observations provide a likely explanation for the increasing number of biological differences being identified between the otherwise highly homologous Ras isoforms and raise interesting questions about the role membrane microlocalization plays in determining the interactions of Ras with its effecters and exchange factors.
Resumo:
The cystic fibrosis transmembrane conductance regulator (CFTR) has been shown previously to be regulated by inhibitory G proteins. In the present study, we demonstrate inhibition of CFTR by alphaG(i2) and alphaG(i1), but not alphaG(0), in Xenopus oocytes. We further examined whether regulators of G protein signaling (RGS) proteins interfere with alphaG(i)-dependent inhibition of CFTR. Activation of CFTR by IBMX and forskolin was attenuated in the presence of alphaG(i2), indicating inhibition of CFTR by alphaG(i2) in Xenopus oocytes. Coexpression of the proteins RGS3 and RGS7 together with CFTR and alphaG(i2) partially recovered activation by IBMX/forskolin. 14-3-3, a protein that is known to interfere with RGS proteins, counteracted the effects of RGS3. These data demonstrate the regulation of CFTR by alphaG(i) in Xenopus oocytes. Because RGS proteins interfere with the G protein-dependent regulation of CFTR, this may offer new potential pathways for pharmacological intervention in cystic fibrosis. (C) 2001 Academic Press.
Resumo:
The major proteins of baboon milk were identified as beta -lactoglobulin (beta LG), alpha -lactalbumin (alpha LA), lysozyme, lactoferrin, casein, and albumin by immobiline isoelectric focusing, SDS-PAGE, immunoblotting of gels with rabbit antisera to human alpha LA, lysozyme, and albumin and bovine beta LG and casein, and N-terminal sequencing of proteins blotted from gels. The first 30 N-terminal residues of baboon polymorphism at residue 2. The complete cDNA sequence and derived amino acid composition of beta LG were elucidated using RT-PCR amplification of poly(A)(+) mRNA purified from lactating mammary gland. Baboon beta LG identified to date. beta LG and alpha LA polymorphisms with three (A, B, and C) and two (A and B) variants, respectively, were detected by immobiline IEF, pH 4-6, of individual baboon milk samples at varying stages of lactation.
Resumo:
Immunocytochemical techniques were used to examine the distribution of neurons immunoreactive (-ir) for nitric oxide synthase (nNOS), somatostatin (SOM), neuropeptide Y (NPY), parvalbumin (PV), calbindin (CB) and calretinin (CH), in the inferotemporal gyros (Brodmann's area 21) of the human neocortex. Neurons that colocalized either nNOS or SOM with PV, CB or CR were also identified by double-labeling techniques. Furthermore, glutamate receptor subunit profiles (GluR1, GluR2/3, GluR2/4, GluR5/6/7 and NMDAR1) were also determined for these cells. The number and distribution of cells containing nNOS, SOM, NPY, PV, CB or CR differed for each antigen. In addition, distinct subpopulations of neurons displayed different degrees of colocalization of these antigens depending on which antigens were compared. Moreover, cells that contained nNOS, SOM, NPY, PV, GB or CR expressed different receptor subunit profiles. These results show that specific subpopulations of neurochemically identified nonpyramidal cells may be activated via different receptor subtypes. As these different subpopulations of cells project to specific regions of pyramidal calls, facilitation of subsets of these cells via different receptor subunits may activate different inhibitory circuits. Thus, various distinct, but overlapping, inhibitory circuits may act in concert in the modulation of normal cortical function, plasticity and disease.
Resumo:
An improved differential display technique was used to search for changes in gene expression in the superior frontal cortex of alcoholics, A cDNA fragment was retrieved and cloned. Further sequence of the cDNA was determined from 5' RACE and screening of a human brain cDNA library. The gene was named hNP22 (human neuronal protein 22). The deduced protein sequence of hNP22 has an estimated molecular mass of 22.4 kDa with a putative calcium-binding site, and phosphorylation sites for casein kinase II and protein kinase C. The deduced amino acid sequence of hNP22 shares homology (from 67% to 42%) with four other proteins, SM22 alpha, calponin, myophilin and mp20. Sequence homology suggests a potential interaction of hNP22 with cytoskeletal elements. hNP22 mRNA was expressed in various brain regions but in alcoholics, greater mRNA expression occurred in the superior frontal cortex, but not in the primary motor cortex or cerebellum. The results suggest that hNP22 may have a role in alcohol-related adaptations and may mediate regulatory signal transduction pathways in neurones.
Resumo:
The aim of this study is to determine whether subpopulations of smooth muscle cells (SMC). as distinguished by variations in contractile and cytoskeletal proteins, appear in the neointima at different times after vascular injury, and/or whether subpopulations develop during serial passaging of these cells. Rat aortae and rabbit carotid arteries were injured with a 2F Fogarty balloon catheter and cultures established from the resulting neointima and the media 2, 6, 12, 16 and 24 weeks later. Cultures were examined at passages 1-5 and subpopulations of SMC categorised by intensity of staining for each protein by immunohistochemistry. Two populations of SMC with different staining intensities ('+ +', '+') were observed for each of the following proteins: alpha -SM actin, SM-myosin, desmin and vimentin. Populations without these proteins were also found. Changes in the percentages of cells expressing these proteins were transitory, indicating that the populations were not limited to a particular tissue (neointima or media), time after injury or passage number. One exception was found in rabbit cultures where the number of desmin-expressing cells quickly decreased with both time after injury and time in culture. Subpopulations of SMC were found at all times after injury in the media and neointima of rat and rabbit arteries, and after multiple passage of these cells. There was no pattern of development of one population suggesting that either no subpopulation has a proliferative or migratory advantage over others, or that only one population exists: that is capable of diverse phenotypic changes. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Several members of the Rubiaceae and Violaceae families produce a series of cycloticles or macrocyclic peptides of 29-31 amino acids with an embedded cystine knot. We aim to understand the mechanism of synthesis of cyclic peptides in plants and have isolated a cDNA clone that encodes the cyclotide kalata Ell as well as three other clones for related cycloticles from the African plant Olden-landia affinis. The cDNA clones encode prepropeptides with a 20-aa signal sequence, an N-terminal prosequence of 46-68 amino acids and one, two, or three cyclotide domains separated by regions of about 25 aa. The corresponding cycloticles have been isolated from plant material, indicating that the cyclotide domains are excised and cyclized from all four predicted precursor proteins. The exact processing site is likely to lie on the N-terminal side of the strongly conserved GlyLeuPro or SerLeuPro sequence that flanks both sides of the cyclotide domain. Cyclotides have previously been assigned an antimicrobial function; here we describe a potent inhibitory effect on the growth and development of larvae from the Lepidopteran species Helicoverpa punctigera.