926 resultados para MODELING APPROACH


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study focuses on quantifying explicitly the sediment budget of deeply incised ravines in the lower Le Sueur River watershed, in southern Minnesota. High-rate-gully-erosion equations along with the Universal Soil Loss Equation (USLE) were implemented in a numerical modeling approach that is based on a time-integration of the sediment balance equations. The model estimates the rates of ravine width and depth change and the amount of sediment periodically flushing from the ravines. Components of the sediment budget of the ravines were simulated with the model and results suggest that the ravine walls are the major sediment source in the ravines. A sensitivity analysis revealed that the erodibility coefficients of the gully bed and wall, the local slope angle and the Manning’s coefficient are the key parameters controlling the rate of sediment production. Recommendations to guide further monitoring efforts in the watershed and increased detail modeling approaches are highlighted as a result of this modeling effort.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Marine mammals exploit the efficiency of sound propagation in the marine environment for essential activities like communication and navigation. For this reason, passive acoustics has particularly high potential for marine mammal studies, especially those aimed at population management and conservation. Despite the rapid realization of this potential through a growing number of studies, much crucial information remains unknown or poorly understood. This research attempts to address two key knowledge gaps, using the well-studied bottlenose dolphin (Tursiops truncatus) as a model species, and underwater acoustic recordings collected on four fixed autonomous sensors deployed at multiple locations in Sarasota Bay, Florida, between September 2012 and August 2013. Underwater noise can hinder dolphin communication. The ability of these animals to overcome this obstacle was examined using recorded noise and dolphin whistles. I found that bottlenose dolphins are able to compensate for increased noise in their environment using a wide range of strategies employed in a singular fashion or in various combinations, depending on the frequency content of the noise, noise source, and time of day. These strategies include modifying whistle frequency characteristics, increasing whistle duration, and increasing whistle redundancy. Recordings were also used to evaluate the performance of six recently developed passive acoustic abundance estimation methods, by comparing their results to the true abundance of animals, obtained via a census conducted within the same area and time period. The methods employed were broadly divided into two categories – those involving direct counts of animals, and those involving counts of cues (signature whistles). The animal-based methods were traditional capture-recapture, spatially explicit capture-recapture (SECR), and an approach that blends the “snapshot” method and mark-recapture distance sampling, referred to here as (SMRDS). The cue-based methods were conventional distance sampling (CDS), an acoustic modeling approach involving the use of the passive sonar equation, and SECR. In the latter approach, detection probability was modelled as a function of sound transmission loss, rather than the Euclidean distance typically used. Of these methods, while SMRDS produced the most accurate estimate, SECR demonstrated the greatest potential for broad applicability to other species and locations, with minimal to no auxiliary data, such as distance from sound source to detector(s), which is often difficult to obtain. This was especially true when this method was compared to traditional capture-recapture results, which greatly underestimated abundance, despite attempts to account for major unmodelled heterogeneity. Furthermore, the incorporation of non-Euclidean distance significantly improved model accuracy. The acoustic modelling approach performed similarly to CDS, but both methods also strongly underestimated abundance. In particular, CDS proved to be inefficient. This approach requires at least 3 sensors for localization at a single point. It was also difficult to obtain accurate distances, and the sample size was greatly reduced by the failure to detect some whistles on all three recorders. As a result, this approach is not recommended for marine mammal abundance estimation when few recorders are available, or in high sound attenuation environments with relatively low sample sizes. It is hoped that these results lead to more informed management decisions, and therefore, more effective species conservation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Antillean manatees (Trichechus manatus manatus) were heavily hunted in the past throughout the Wider Caribbean Region (WCR), and are currently listed as endangered on the IUCN Red List of Threatened Species. In most WCR countries, including Haiti and the Dominican Republic, remaining manatee populations are believed to be small and declining, but current information is needed on their status, distribution, and local threats to the species.

To assess the past and current distribution and conservation status of the Antillean manatee in Hispaniola, I conducted a systematic review of documentary archives dating from the pre-Columbian era to 2013. I then surveyed more than 670 artisanal fishers from Haiti and the Dominican Republic in 2013-2014 using a standardized questionnaire. Finally, to identify important areas for manatees in the Dominican Republic, I developed a country-wide ensemble model of manatee distribution, and compared modeled hotspots with those identified by fishers.

Manatees were historically abundant in Hispaniola, but were hunted for their meat and became relatively rare by the end of the 19th century. The use of manatee body parts diversified with time to include their oil, skin, and bones. Traditional uses for folk medicine and handcrafts persist today in coastal communities in the Dominican Republic. Most threats to Antillean manatees in Hispaniola are anthropogenic in nature, and most mortality is caused by fisheries. I estimated a minimum island-wide annual mortality of approximately 20 animals. To understand the impact of this level of mortality, and to provide a baseline for measuring the success of future conservation actions, the Dominican Republic and Haiti should work together to obtain a reliable estimate of the current population size of manatees in Hispaniola.

In Haiti, the survey of fishers showed a wider distribution range of the species than suggested by the documentary archive review: fishers reported recent manatee sightings in seven of nine coastal departments, and three manatee hotspot areas were identified in the north, central, and south coasts. Thus, the contracted manatee distribution range suggested by the documentary archive review likely reflects a lack of research in Haiti. Both the review and the interviews agreed that manatees no longer occupy freshwater habitats in the country. In general, more dedicated manatee studies are needed in Haiti, employing aerial, land, or boat surveys.

In the Dominican Republic, the documentary archive review and the survey of fishers showed that manatees still occur throughout the country, and occasionally occupy freshwater habitats. Monte Cristi province in the north coast, and Barahona province in the south coast, were identified as focal areas. Sighting reports of manatees decreased from Monte Cristi eastwards to the adjacent province in the Dominican Republic, and westwards into Haiti. Along the north coast of Haiti, the number of manatee sighting and capture reports decreased with increasing distance to Monte Cristi province. There was good agreement among the modeled manatee hotspots, hotspots identified by fishers, and hotspots identified during previous dedicated manatee studies. The concordance of these results suggests that the distribution and patterns of habitat use of manatees in the Dominican Republic have not changed dramatically in over 30 years, and that the remaining manatees exhibit some degree of site fidelity. The ensemble modeling approach used in the present study produced accurate and detailed maps of manatee distribution with minimum data requirements. This modeling strategy is replicable and readily transferable to other countries in the Caribbean or elsewhere with limited data on a species of interest.

The intrinsic value of manatees was stronger for artisanal fishers in the Dominican Republic than in Haiti, and most Dominican fishers showed a positive attitude towards manatee conservation. The Dominican Republic is an upper middle income country with a high Human Development Index. It possesses a legal framework that specifically protects manatees, and has a greater number of marine protected areas, more dedicated manatee studies, and more manatee education and awareness campaigns than Haiti. The constant presence of manatees in specific coastal segments of the Dominican Republic, the perceived decline in the number of manatee captures, and a more conservation-minded public, offer hope for manatee conservation, as non-consumptive uses of manatees become more popular. I recommend a series of conservation actions in the Dominican Republic, including: reducing risks to manatees from harmful fishing gear and watercraft at confirmed manatee hotspots; providing alternative economic alternatives for displaced fishers, and developing responsible ecotourism ventures for manatee watching; improving law enforcement to reduce fisheries-related manatee deaths, stop the illegal trade in manatee body parts, and better protect manatee habitat; and continuing education and awareness campaigns for coastal communities near manatee hotspots.

In contrast, most fishers in Haiti continue to value manatees as a source of food and income, and showed a generally negative attitude towards manatee conservation. Haiti is a low income country with a low Human Development Index. Only a single dedicated manatee study has been conducted in Haiti, and manatees are not officially protected. Positive initiatives for manatees in Haiti include: protected areas declared in 2013 and 2014 that enclose two of the manatee hotspots identified in the present study; and local organizations that are currently working on coastal and marine environmental issues, including research and education on marine mammals. Future conservation efforts for manatees in Haiti should focus on addressing poverty and providing viable economic alternatives for coastal communities. I recommend a community partnership approach for manatee conservation, paired with education and awareness campaigns to inform coastal communities about the conservation situation of manatees in Haiti, and to help change their perceived value. Haiti should also provide legal protection for manatees and their habitat.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Boccardia proboscidea is a recently introduced polychaete in South Africa where it is a notorious pest of commercially reared abalone. Populations were originally restricted to abalone farms but a recent exodus into the wild at some localities has raised conservation concerns due to the species’ invasive status in other parts of the world. Here, we assessed the dispersal potential of B. proboscidea by using a population genetic and oceanographic modeling approach. Since the worm is in its incipient stages of a potential invasion, we used the closely related Polydora hoplura as a proxy due its similar reproductive strategy and its status as a pest of commercially reared oysters in the country. Populations of P. hoplura were sampled from seven different localities and a section of the mtDNA gene, Cyt b and the intron ATPSa was amplified. A high resolution model of the coastal waters around southern Africa was constructed using the Regional Ocean Modeling System. Larvae were represented by passive drifters that were deployed at specific points along the coast and dispersal was quantified after a 12-month integration period. Our results showed discordance between the genetic and modeling data. There was low genetic structure (Φ = 0.04 for both markers) and no geographic patterning of mtDNA and nDNA haplotypes. However, the dispersal model found limited connectivity around Cape Point—a major phylogeographic barrier on the southern African coast. This discordance was attributed to anthropogenic movement of larvae and adult worms due to vectors such as aquaculture and shipping. As such, we hypothesized that cryptic dispersal could be overestimating genetic connectivity. Though wild populations of B. proboscidea could become isolated due to the Cape Point barrier, anthropogenic movement may play the critical role in facilitating the dispersal and spread of this species on the southern African coast.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Boccardia proboscidea is a recently introduced polychaete in South Africa where it is a notorious pest of commercially reared abalone. Populations were originally restricted to abalone farms but a recent exodus into the wild at some localities has raised conservation concerns due to the species’ invasive status in other parts of the world. Here, we assessed the dispersal potential of B. proboscidea by using a population genetic and oceanographic modeling approach. Since the worm is in its incipient stages of a potential invasion, we used the closely related Polydora hoplura as a proxy due its similar reproductive strategy and its status as a pest of commercially reared oysters in the country. Populations of P. hoplura were sampled from seven different localities and a section of the mtDNA gene, Cyt b and the intron ATPSa was amplified. A high resolution model of the coastal waters around southern Africa was constructed using the Regional Ocean Modeling System. Larvae were represented by passive drifters that were deployed at specific points along the coast and dispersal was quantified after a 12-month integration period. Our results showed discordance between the genetic and modeling data. There was low genetic structure (Φ = 0.04 for both markers) and no geographic patterning of mtDNA and nDNA haplotypes. However, the dispersal model found limited connectivity around Cape Point—a major phylogeographic barrier on the southern African coast. This discordance was attributed to anthropogenic movement of larvae and adult worms due to vectors such as aquaculture and shipping. As such, we hypothesized that cryptic dispersal could be overestimating genetic connectivity. Though wild populations of B. proboscidea could become isolated due to the Cape Point barrier, anthropogenic movement may play the critical role in facilitating the dispersal and spread of this species on the southern African coast.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As one of the most successfully commercialized distributed energy resources, the long-term effects of microturbines (MTs) on the distribution network has not been fully investigated due to the complex thermo-fluid-mechanical energy conversion processes. This is further complicated by the fact that the parameter and internal data of MTs are not always available to the electric utility, due to different ownerships and confidentiality concerns. To address this issue, a general modeling approach for MTs is proposed in this paper, which allows for the long-term simulation of the distribution network with multiple MTs. First, the feasibility of deriving a simplified MT model for long-term dynamic analysis of the distribution network is discussed, based on the physical understanding of dynamic processes that occurred within MTs. Then a three-stage identification method is developed in order to obtain a piecewise MT model and predict electro-mechanical system behaviors with saturation. Next, assisted with the electric power flow calculation tool, a fast simulation methodology is proposed to evaluate the long-term impact of multiple MTs on the distribution network. Finally, the model is verified by using Capstone C30 microturbine experiments, and further applied to the dynamic simulation of a modified IEEE 37-node test feeder with promising results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’Internet Physique (IP) est une initiative qui identifie plusieurs symptômes d’inefficacité et non-durabilité des systèmes logistiques et les traite en proposant un nouveau paradigme appelé logistique hyperconnectée. Semblable à l’Internet Digital, qui relie des milliers de réseaux d’ordinateurs personnels et locaux, IP permettra de relier les systèmes logistiques fragmentés actuels. Le but principal étant d’améliorer la performance des systèmes logistiques des points de vue économique, environnemental et social. Se concentrant spécifiquement sur les systèmes de distribution, cette thèse remet en question l’ordre de magnitude du gain de performances en exploitant la distribution hyperconnectée habilitée par IP. Elle concerne également la caractérisation de la planification de la distribution hyperconnectée. Pour répondre à la première question, une approche de la recherche exploratoire basée sur la modélisation de l’optimisation est appliquée, où les systèmes de distribution actuels et potentiels sont modélisés. Ensuite, un ensemble d’échantillons d’affaires réalistes sont créé, et leurs performances économique et environnementale sont évaluées en ciblant de multiples performances sociales. Un cadre conceptuel de planification, incluant la modélisation mathématique est proposé pour l’aide à la prise de décision dans des systèmes de distribution hyperconnectée. Partant des résultats obtenus par notre étude, nous avons démontré qu’un gain substantiel peut être obtenu en migrant vers la distribution hyperconnectée. Nous avons également démontré que l’ampleur du gain varie en fonction des caractéristiques des activités et des performances sociales ciblées. Puisque l’Internet physique est un sujet nouveau, le Chapitre 1 présente brièvement l’IP et hyper connectivité. Le Chapitre 2 discute les fondements, l’objectif et la méthodologie de la recherche. Les défis relevés au cours de cette recherche sont décrits et le type de contributions visés est mis en évidence. Le Chapitre 3 présente les modèles d’optimisation. Influencés par les caractéristiques des systèmes de distribution actuels et potentiels, trois modèles fondés sur le système de distribution sont développés. Chapitre 4 traite la caractérisation des échantillons d’affaires ainsi que la modélisation et le calibrage des paramètres employés dans les modèles. Les résultats de la recherche exploratoire sont présentés au Chapitre 5. Le Chapitre 6 décrit le cadre conceptuel de planification de la distribution hyperconnectée. Le chapitre 7 résume le contenu de la thèse et met en évidence les contributions principales. En outre, il identifie les limites de la recherche et les avenues potentielles de recherches futures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The resilience of a social-ecological system is measured by its ability to retain core functionality when subjected to perturbation. Resilience is contextually dependent on the state of system components, the complex interactions among these components, and the timing, location, and magnitude of perturbations. The stability landscape concept provides a useful framework for considering resilience within the specified context of a particular social-ecological system but has proven difficult to operationalize. This difficulty stems largely from the complex, multidimensional nature of the systems of interest and uncertainty in system response. Agent-based models are an effective methodology for understanding how cross-scale processes within and across social and ecological domains contribute to overall system resilience. We present the results of a stylized model of agricultural land use in a small watershed that is typical of the Midwestern United States. The spatially explicit model couples land use, biophysical models, and economic drivers with an agent-based model to explore the effects of perturbations and policy adaptations on system outcomes. By applying the coupled modeling approach within the resilience and stability landscape frameworks, we (1) estimate the sensitivity of the system to context-specific perturbations, (2) determine potential outcomes of those perturbations, (3) identify possible alternative states within state space, (4) evaluate the resilience of system states, and (5) characterize changes in system-scale resilience brought on by changes in individual land use decisions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The structure of the Moroccan and Nova Scotia conjugate rifted margins is of key importance for understanding the Mesozoic break-up and evolution of the northern central Atlantic Ocean basin. Seven combined multichannel reflection (MCS) and wide-angle seismic (OBS) data profiles were acquired along the Atlantic Moroccan margin between the latitudes of 31.5° and 33° N during the MIRROR seismic survey in 2011, in order to image the transition from continental to oceanic crust, to study the variation in crustal structure and to characterize the crust under the West African Coast Magnetic Anomaly (WACMA). The data were modeled using a forward modeling approach. The final models image crustal thinning from 36 km thickness below the continent to approximately 8 km in the oceanic domain. A 100 km wide zone characterized by rough basement topography and high seismic velocities up to 7.4 km/s in the lower crust is observed westward of the West African Coast Magnetic Anomaly. No basin underlain by continental crust has been imaged in this region, as has been identified north of our study area. Comparison to the conjugate Nova Scotian margin shows a similar continental crustal thickness and layer geometry, and the existence of exhumed and serpentinized upper mantle material on the Canadian side only. The oceanic crustal thickness is lower on the Canadian margin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transportation system resilience has been the subject of several recent studies. To assess the resilience of a transportation network, however, it is essential to model its interactions with and reliance on other lifelines. In this work, a bi-level, mixed-integer, stochastic program is presented for quantifying the resilience of a coupled traffic-power network under a host of potential natural or anthropogenic hazard-impact scenarios. A two-layer network representation is employed that includes details of both systems. Interdependencies between the urban traffic and electric power distribution systems are captured through linking variables and logical constraints. The modeling approach was applied on a case study developed on a portion of the signalized traffic-power distribution system in southern Minneapolis. The results of the case study show the importance of explicitly considering interdependencies between critical infrastructures in transportation resilience estimation. The results also provide insights on lifeline performance from an alternative power perspective.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Macro and micro-economic perspectives are combined in an eco- nomic growth model. An agent-based modeling approach is used to develop an overlapping generation framework where endogenous growth is supported by work- ers that decide to study depending on their relative (skilled and unskilled) indi- vidual satisfaction. The micro perspective is based on individual satisfaction: an utility function computed from the variation of the relative income in both space and time. The macro perspective emerges from micro decisions, and, as in other growth models of this type, concerns an important allocative social decision the share of the working population that is engaged in producing ideas (skilled work- ers). Simulations show that production and satisfaction levels are higher when the evolution of income measured in both space and time are equally weighted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The amount of information contained within the Internet has exploded in recent decades. As more and more news, blogs, and many other kinds of articles that are published on the Internet, categorization of articles and documents are increasingly desired. Among the approaches to categorize articles, labeling is one of the most common method; it provides a relatively intuitive and effective way to separate articles into different categories. However, manual labeling is limited by its efficiency, even thought the labels selected manually have relatively high quality. This report explores the topic modeling approach of Online Latent Dirichlet Allocation (Online-LDA). Additionally, a method to automatically label articles with their latent topics by combining the Online-LDA posterior with a probabilistic automatic labeling algorithm is implemented. The goal of this report is to examine the accuracy of the labels generated automatically by a topic model and probabilistic relevance algorithm for a set of real-world, dynamically updated articles from an online Rich Site Summary (RSS) service.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Credible spatial information characterizing the structure and site quality of forests is critical to sustainable forest management and planning, especially given the increasing demands and threats to forest products and services. Forest managers and planners are required to evaluate forest conditions over a broad range of scales, contingent on operational or reporting requirements. Traditionally, forest inventory estimates are generated via a design-based approach that involves generalizing sample plot measurements to characterize an unknown population across a larger area of interest. However, field plot measurements are costly and as a consequence spatial coverage is limited. Remote sensing technologies have shown remarkable success in augmenting limited sample plot data to generate stand- and landscape-level spatial predictions of forest inventory attributes. Further enhancement of forest inventory approaches that couple field measurements with cutting edge remotely sensed and geospatial datasets are essential to sustainable forest management. We evaluated a novel Random Forest based k Nearest Neighbors (RF-kNN) imputation approach to couple remote sensing and geospatial data with field inventory collected by different sampling methods to generate forest inventory information across large spatial extents. The forest inventory data collected by the FIA program of US Forest Service was integrated with optical remote sensing and other geospatial datasets to produce biomass distribution maps for a part of the Lake States and species-specific site index maps for the entire Lake State. Targeting small-area application of the state-of-art remote sensing, LiDAR (light detection and ranging) data was integrated with the field data collected by an inexpensive method, called variable plot sampling, in the Ford Forest of Michigan Tech to derive standing volume map in a cost-effective way. The outputs of the RF-kNN imputation were compared with independent validation datasets and extant map products based on different sampling and modeling strategies. The RF-kNN modeling approach was found to be very effective, especially for large-area estimation, and produced results statistically equivalent to the field observations or the estimates derived from secondary data sources. The models are useful to resource managers for operational and strategic purposes.