811 resultados para MITOCHONDRIAL DYSFUNCTION
Resumo:
Background In familial hyperaldosteronism type I (FH-I), glucocorticoid treatment suppresses adrenocorticotrophic hormone-regulated hybrid gene expression and corrects hyperaldosteronism. Objective To determine whether the wild-type aldosterone synthase genes, thereby released from chronic suppression, are capable of functioning normally. Methods We compared mid-morning levels of plasma potassium, plasma aldosterone, plasma renin activity (PRA) and aldosterone : PRA ratios, measured with patients in an upright position, and responsiveness of aldosterone levels to infusion of angiotensin II (AII), for 11 patients with FH-I before and during long-term (0.8-14.3 years) treatment with 0.25-0.75 mg/day dexamethasone or 2.5-10 mg/day prednisolone. Results During glucocorticoid treatment, hypertension was corrected in all. Potassium levels, which had been low (< 3.5 mmol/l) in two patients before treatment, were normal in all during treatment (mean 4.0 +/- 0.1 mmol/l, range 3.5-4.6). Aldosterone levels during treatment [13.2 +/- 2.1 ng/100 ml (mean +/- SEM)] were lower than those before treatment (20.1 +/- 2.5 ng/100 ml, P < 0.05). PRA levels, which had been suppressed before treatment (0.5 +/- 0.2 ng/ml per h), were unsuppressed during treatment (5.1 +/- 1.5 ng/ml per h, P < 0.01) and elevated (> 4 ng/ml per h) in six patients. Aldosterone : PRA ratios, which had been elevated (> 30) before treatment (101.1 +/- 25.9), were much lower during treatment (4.1 +/- 1.0, P < 0.005) and below normal (< 5) in eight patients. Surprisingly, aldosterone level, which had not been responsive (< 50% rise) to infusion of AII for all 11 patients before treatment, remained unresponsive for 10 during treatment. Conclusions Apparently regardless of duration of glucocorticoid treatment in FH-I, aldosterone level remains poorly responsive to AII, with a higher than normal PRA and a low aldosterone : PRA ratio. This is consistent with there being a persistent defect in functioning of wild-type aldosterone synthase gene. (C) Rapid Science Publishers ISSN 0263-6352.
Resumo:
Patterns of population subdivision and the relationship between gene flow and geographical distance in the tropical estuarine fish Lares calcarifer (Centropomidae) were investigated using mtDNA control region sequences. Sixty-three putative haplotypes were resolved from a total of 270 individuals from nine localities within three geographical regions spanning the north Australian coastline. Despite a continuous estuarine distribution throughout the sampled range, no haplotypes were shared among regions. However, within regions, common haplotypes were often shared among localities. Both sequence-based (average Phi(ST)=0.328) and haplotype-based (average Phi(ST)=0.182) population subdivision analyses indicated strong geographical structuring. Depending on the method of calculation, geographical distance explained either 79 per cent (sequence-based) or 23 per cent (haplotype-based) of the variation in mitochondrial gene flow. Such relationships suggest that genetic differentiation of L. calcarifer has been generated via isolation-by-distance, possibly in a stepping-stone fashion. This pattern of genetic structure is concordant with expectations based on the life history of L. calcarifer and direct studies of its dispersal patterns. Mitochondrial DNA variation, although generally in agreement with patterns of allozyme variation, detected population subdivision at smaller spatial scales. Our analysis of mtDNA variation in L. calcarifer confirms that population genetic models can detect population structure of not only evolutionary significance but also of demographic significance. Further, it demonstrates the power of inferring such structure from hypervariable markers, which correspond to small effective population sizes.
Resumo:
We sequenced across all of the gene boundaries in the mitochondrial genome of the cattle tick, Boophilus microplus, to determine the arrangement of its genes. The mtDNA of B. microplus has a coding region, composed of tRNA(Glu) and 60 bp of the 3' end of ND1, that is repeated five times. Boophilus microplus is the first coelomate animal known to have more than two copies of a coding sequence. The mitochondrial genome of B, microplus has other unusual features, including (1) reduced T arms in tRNAs, (2) an AT bias in codon use, (3) two control regions that have evolved in concert, (4) three gene rearrangements, and (5) a stem-loop between tRNA(Gln) and tRNA(Phe). The short T arms and small control regions (CRs) of B. microplus and other ticks suggest strong selection for small genomes. Imprecise termination of replication beyond its origin, which can account for the evolution of tandem repeats of coding regions in other mitochondrial genomes, cannot explain the evolution of the fivefold repeated sequence in the mitochondrial genome of B. microplus. Instead, slipped-strand mispairing or recombination are the most plausible explanations for the evolution of these tandem repeats.
Resumo:
The koala, Phascolarctos cinereus, is a geographically widespread species endemic to Australia, with three currently recognized subspecies: P.c. adustus, P.c. cinereus, and P.c. victor. Intraspecific variation in the mitochondrial DNA (mtDNA) control region was examined in over 200 animals from 16 representative populations throughout the species' range. Eighteen different haplotypes were defined in the approximate to 860 bp mtDNA control region as determined by heteroduplex analysis/temperature gradient gel electrophoresis (HDA/TGGE). Any single population typically possessed only one or two haplotypes yielding an average within-population haplotypic diversity of 0.180 +/- 0.003, and nucleotide diversity of 0.16%. Overall, mtDNA control region sequence diversity between populations averaged 0.67%, and ranged from 0% to 1.56%. Nucleotide divergence between populations averaged 0.51%, and ranged from 0% to 1.53%. Neighbour-joining methods revealed limited phylogenetic distinction between geographically distant populations of koalas, and tentative support for a single evolutionarily significant unit (ESU). This is consistent with previous suggestions that the morphological differences formalized by subspecific taxonomy may be interpreted as clinal variation. Significant differentiation in mtDNA-haplotype frequencies between localities suggested that little gene now currently exists among populations. When combined with microsatellite analysis, which has revealed substantial differentiation among koala populations, we conclude that the appropriate short-term management unit (MU) for koalas is the local population.
Resumo:
Erectile dysfunction (ED) is a common problem in general medical practice affecting especially the elderly and those with cardiovascular disease and diabetes mellitus, A study was undertaken by questionnaire distributed to consecutive adult male attendees at 62 general medical practices. 1240 completed questionnaires were available for analysis. The mean age of participants was 56.4 y (range 18 - 91 y). 488 men (39.4%) reported ED: 119 (9.6%) 'occasionally', 110 (8.9%) 'often', and 231 (18.6%) 'all the time' (complete ED). Among 707 men aged 40-69 y 240 (33.9%) reported ED and 84 (11.9%) had complete ED. The prevalence of complete ED increased with age, rising from 2.0% in the 40-49 y age group to 44.9% in the 70-79 y age group. Only 11.6% of men with ED had received treatment. Hypertension, ischaemic heart disease, peripheral vascular disease and diabetes mellitus were frequently associated with ED. 40% of diabetic men aged 60 y or older had ED all the time.
Resumo:
The number of repeats in repetitive DNA like micro- and minisatellites is often determined by polymerase chain reaction (PCR). When we counted repeats in an array of mitochondrial repeats in the cattle tick (Boophilus microplus) we found that the number of repeats increased during PCR. Multiplication of the repeats was independent of the primers used to amplify the region, the PCR annealing temperature and the length of the PCR product. The use of PCR to determine the number of repeats in arrays needs to be reassessed. For long repeats, a subset of samples should always be analysed by Southern blot hybridization to confirm the PCR results.
Resumo:
Background and Purpose - Epidemiological and laboratory studies suggest that increasing concentrations of plasma homocysteine ( total homocysteine [tHcy]) accelerate cardiovascular disease by promoting vascular inflammation, endothelial dysfunction, and hypercoagulability. Methods - We conducted a randomized controlled trial in 285 patients with recent transient ischemic attack or stroke to examine the effect of lowering tHcy with folic acid 2 mg, vitamin B-12 0.5 mg, and vitamin B-6 25 mg compared with placebo on laboratory markers of vascular inflammation, endothelial dysfunction, and hypercoagulability. Results - At 6 months after randomization, there was no significant difference in blood concentrations of markers of vascular inflammation (high-sensitivity C-reactive protein [P = 0.32]; soluble CD40L [ P = 0.33]; IL-6 [P = 0.77]), endothelial dysfunction ( vascular cell adhesion molecule-1 [P = 0.27]; intercellular adhesion molecule-1 [P = 0.08]; von Willebrand factor [P = 0.92]), and hypercoagulability (P-selectin [P = 0.33]; prothrombin fragment 1 and 2 [P = 0.81]; D-dimer [P = 0.88]) among patients assigned vitamin therapy compared with placebo despite a 3.7-mumol/L (95% CI, 2.7 to 4.7) reduction in total homocysteine (tHcy). Conclusions - Lowering tHcy by 3.7 mumol/L with folic acid-based multivitamin therapy does not significantly reduce blood concentrations of the biomarkers of inflammation, endothelial dysfunction, or hypercoagulability measured in our study. The possible explanations for our findings are: ( 1) these biomarkers are not sensitive to the effects of lowering tHcy (eg, multiple risk factor interventions may be required); ( 2) elevated tHcy causes cardiovascular disease by mechanisms other than the biomarkers measured; or ( 3) elevated tHcy is a noncausal marker of increased vascular risk.
Resumo:
An analysis of the relationships of the major arthropod groups Was undertaken using mitochondrial genome data to examine the hypotheses that Hexapoda is polyphyletic and that Collembola is more closely related to branchiopod crustaceans than insects. We sought to examine the sensitivity of this relationship to outgroup choice, data treatment. gene choice and optimality criteria used in the phylogenetic analysis of mitochondrial genome data. Additionally we sequenced the mitochondrial genome of ail archaeognathan, Nesomachilis australica. to improve taxon selection in the apterygote insects, a group poorly represented in previous mitochondrial phylogenies. The sister group of the Collembola was rarely resolved in our analyses with a significant level of support. The use of different outgroups (myriapods, nematodes, or annelids + mollusks) resulted in many different placements of Collembola. The way in which the dataset was coded for analysis (DNA, DNA with the exclusion of third codon position and as amino acids) also had marked affects on tree topology. We found that nodal Support was spread evenly throughout the 13 mitochondrial genes and the exclusion of genes resulted in significantly less resolution in the inferred trees. Optimality criteria had a much lesser effect on topology than the preceding factors; parsimony and Bayesian trees for a given data set and treatment were quite similar. We therefore conclude that the relationships of the extant arthropod groups as inferred by mitochondrial genomes are highly vulnerable to outgroup choice, data treatment and gene choice, and no consistent alternative hypothesis of Collembola's relationships is supported. Pending the resolution of these identified problems with the application of mitogenomic data to basal arthropod relationships, it is difficult to justify the rejection of hexapod monophyly, which is well supported on morphological grounds. (c) The Willi Hennig Society 2004.
Resumo:
To study the genetic structure of the Tikuna tribe, four major Native American mitochondrial DNA (mtDNA) founder haplogroups were analyzed in 187 Amerindians from eight Tikuna villages located in the Brazilian Amazon. The central position of these villages in the continent makes them relevant for attempts to reconstruct population movements in South America. In this geographic region, there is particular concern regarding the genetic structure of the Tikuna tribe, formerly designated ""enigmatic"" due to its remarkable degree of intratribal homogeneity and the scarcity of private protein variants. In spite of its large population size and geographic distribution, the Tikuna tribe presents marked genetic and linguistic isolation. All individuals presented indigenous mtDNA haplogroups. An intratribal genetic heterogeneity pattern characterized by two highly homogeneous Tikuna groups that differ considerably from each other was observed. Such a finding was unexpected, since the Tikuna tribe is characterized by a social system that favors intratribal exogamy and patrilocality that would lead to a higher female migration rate and homogenization of the mtDNA gene pool. Demographic explosions and religious events, which significantly changed the sizes and compositions of many Tikuna villages, may be reflected in the genetic results presented here. Am J Phys Anthropol 140:526-531,2009. (C) 2009 Wiley-Liss, Inc
Resumo:
No abstract.