888 resultados para MICELLAR ELECTROKINETIC CHROMATOGRAPHY
Resumo:
Nucleosides in human urine and serum have frequently been studied as a possible biomedical marker for cancer, acquired immune deficiency syndrome (AIDS) and the whole-body turnover of RNAs. Fifteen normal and modified nucleosides were determined in 69 urine and 42 serum samples using high-performance liquid chromatography (HPLC). Artificial neural networks have been used as a powerful pattern recognition tool to distinguish cancer patients from healthy persons. The recognition rate for the training set reached 100%. In the validating set, 95.8 and 92.9% of people were correctly classified into cancer patients and healthy persons when urine and serum were used as the sample for measuring the nucleosides. The results show that the artificial neural network technique is better than principal component analysis for the classification of healthy persons and cancer patients based on nucleoside data. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Monolithic capillary columns for affinity chromatography were prepared by an in situ polymerization procedure using glycidyl methacrylate (GMA) as a monomer and trimethylolpropane trimethacrylate (TRIM) and ethylene dimethacrylate (EDMA) as cross-linkers, respectively. Scanning electron microscopy was applied to characterize the morphology of the end of monolithic capillary and mercury intrusion porosimetry to characterize the polymer rod prepared within the confines of a stainless steel column with 50 mm x 4.6 mm i.d. under the same polymerization condition. Obvious differences in the porous properties between the TRIM- and EDMA-based monoliths could be observed. Moreover, the mechanical stability of these two monolithic capillary columns was compared by testing the reproducibility of the column performance. The rod prepared with GMA and TRIM proved to be mechanically more stable than that prepared with GMA and EDMA. Protein A was immobilized on the monolithic rod for affinity chromatography and the experiments were performed on a capillary electrophoresis instrument, using its pressure system as the driving force. Non-specific adsorption was not observed on the TRIM-based affinity column, as proved with bovine serum albumin (BSA) as a test protein. The affinity column prepared with GMA and TRIM was then applied to determine the hIgG concentration in human serum. The correlative coefficient of the calibration curve reached 0.9942. The amount of adsorbed hIgG was unaffected by the flow rate of the loading buffer, which makes this method suitable for fast determination of biomacromolecules in microliter samples. (C) 2002 Elsevier Science B.V All rights reserved.
Resumo:
City Univ Hong Kong
Resumo:
In this investigation, hydrophobically modified polyacrylamide with low amounts of anionic long-chain alkyl was synthesized by the free radical polymerization in deionized water. This water-soluble copolymerization method is more convenient compared with the traditional micellar copolymerization methods. The copolymers were characterized using Fourier transform infrared, H-1 NMR, and the molecular weight and polydispersity were determined using gel permeation chromatography. The solution behavior of the copolymers was studied as a function of composition, pH, and added electrolytes. As NaCl was added to solutions of AM/C(11)AM copolymers or pH was lowered, the shielding or elimination of electrostatic repulsions between carboxylate groups of the C(11)AM unit lead to coil shrinkage.
Resumo:
In this paper, we described a simple and rapid method, capillary electrophoresis with electrochemiluminescence (CE-ECL) detection using tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)(2+)), to simultaneously detect pethidine and methadone. Analytes were injected to separation capillary of 67.5 cm length (25 mu m i.d., 360 mu m o.d.) by electrokinetic injection for 10 s at 10 kV.
Resumo:
The stability of diester-diterpenoid alkaloids (DDA) from plants of the genus Aconitum L. has been studied in different solvents and pH buffers. The HPLC/ESIMS method for analysing the concentration of DDA was established and DDA's decomposition products were elucidated by HPLC/ESI-MS/MSn. In different solvents, e.g. dichloromethane, ether, methanol and distilled water, the decomposition pathways of DDA are quite different and their difference in stabilities depends on the difference of their structures, in which substituents at the N atom and substituents at C-3 are different. The pyrolytic products of DDA, such as deacetoxy aconitine-type alkaloids, have been observed in the above solvents, whereas 8-methoxy-14-benzoyl aconitine-type alkaloids have been obtained only in methanol.
Resumo:
The extraction behavior of thorium(IV) sulfate by primary amine N1923 in imidazolium-based ionic liquid (IL) namely 1-octyl-3-methylimidazolium hexafluorophosphate ([C(8)mim]PF6) was systematically studied in this paper. Results showed that the extraction behavior was quite different from that using conventional solvent as diluent. A reversed micellar solubilization extraction mechanism was proposed for the extraction of thorium(IV) by N1923/[C(8)mim]PF6 via slope analysis method and polarized optical microscopy (POM)/transmission electron microscopy (TEM) observation. The salt-out agent, Na2SO4, was demonstrated to prompt this extraction mechanism.
Resumo:
The present work describes a liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) method for rapid identification of phenylethanoid glycosides in plant extract from Plantago asiatica L. By using a binary mobile phase system consisting of 0.2% acetic acid and acetonitrile under gradient conditions, a good separation was achieved on a reversed-phase C-18 column. The [M-H](-) ions, the molecular weights, and the fragment ions of phenylethanoid glycosides were obtained in the negative ion mode using LC-ESI-MS. The identification of the phenylethanoid glycosides (peaks 1-3) in the extract of P. asiatica L. was based on matching their retention time, the detection of molecular ions, and the fragment ions obtained by collision-induced dissociation (CID) experiments with those of the authentic standards and data reported in the literature.
Resumo:
The iridoid glycosides in crude and processed extracts from cornus officinals have been analyzed by high performance liquid chromatography-electrospray ionization mass spectrometry. Samples were analyzed by a reversed-phase C18 column using a binary eluent under gradient conditions. Seven iridoid glycosides could be separated and detected. The [M-H](-) ions of iridoid glycosides in the negative ion mode were observed, which reflect their molecule mass information. An in-source collision induced dissociation (in-source CID) experiment was carried out in order to identify the structures and to measure the contents of iridoid glycosides. The epimers were discovered in the experiment for the first time, namely 7 alpha-O-ethyl-morroniside and 7 beta-O-ethylmorroniside.
Resumo:
Four saponins were isolated from the leaves of Aralia elata, and established using NMR and other spectroscopic methods, as well as data reported in the literature. Three Aralia saponins from the leaves of Aralia elata sharing the same structures as those isolated from the root bark suggested that the leaves would be a good substitute for the root bark of Aralia elata. These four Aralia saponins were then extensively investigated using complementarily positive and negative electrospray ionization multistage tandem mass spectrometry (ESI-MSn). Two isomers of saponins with different sugar linkages were then successfully differentiated by positive ESI-MSn and verified with different retention times and the collision-induced dissociation (CID) spectra by LC-MS. A simple and effective LC-MS method was thus developed for the rapid identification and screening of these saponins in plant extracts from leaves of Aralia elata.
Resumo:
White-light emission is achieved from a single layer of diblock copolymer micelles containing green- and red-light-emitting dyes in the separate micellar cores and blue-light-emitting polymer around their periphery, in which fluorescence resonance energy transfer between fluorophores is inhibited due to micelle isolation, resulting in simultaneous emission of these three species.
Resumo:
The principal components, isoflavonoids and astragalosides, in the extract of Radix Astragali were detected by a high-performance liquid chromatography Couple to electrospray ionization ion trap multiple-stage tandem mass spectrometry (HPLC-ESI-IT-MSn) method. By comparing the retention time (t(R)) of HPLC, the ESI-MSn data and the structures of analyzed Compounds with the data of reference compounds and in the literature, 17 isoflavonoids and 12 astragalosides have been identified or tentatively deduced. By Virtue of the extracted ion chromatogram (EIC) mode, simultaneous determination of isoflavonoids and astragalosides could be achieved when the different components formed overlapped peaks. And this method has been utilized to analyze the constituents in extracts of Radix Astragali from Helong City and of different growth years. Then the antioxidant activity of different samples has been Successfully investigated by HPLC-ESI-MS method in multiple selected ion monitoring(MIM) mode, applying the spin trapping technology, and the Ferric Reducing Antioxidant Power (FRAP) assay was applied to support the result.
Resumo:
The hydrolysis of ginsenoside standards and the crude extracts of ginseng has been investigated at different pH values (2.4 - 11.2) using high performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI-MS). The experimental results indicated that the pH value of aqueous solutions is an important factor in changing the composition of ginsenosides. For (20S)-protopanaxadiol ginsenosides, ginsenosides with a large mass hydrolyzed to form hydrolysates (20S)-Rg(3) and (20R)-Rg(3) at pH 4.3. There were more hydrolyzed products observed at pH 3.3: (20S)-F-2, C-25,26 hydrated ginsenoside "C-Y-1" and "C-Y-2" (MW = 802 Da) accompanied with (20S)-Rg(3), (20R)-Rg(3). At pH 2.4, only (20R)-Rg(3), (20S)-F-2, a small quantity of (20S)-Rg(3) and three C-25,26 hydrated ginsenosides were obtained. For (20S)protopanaxatriol Re, no hydrolysates were observed at pH 4.3; it was hydrolyzed at pH 3.3 to form hydrolysates (20S)-Rg, (20R)Rg(2) and hydrated C-25,26 (MW = 802 Da) and at pH 2.4 only C-25,26 hydrated ginsenosides "C-Y-1" and "C-Y-2" (MW = 802 Da) were left in the solution. Similar hydrolysis reactions could be also observed for the crude extracts of ginseng. It showed that HPLC/ESI-MS is a fast and convenient method to study the hydrolysis of ginseng.
Resumo:
Paeoniflorin standard was first investigated by electrospray ionization Fourier transform ion cyclotron resonance tandem mass spectrometry (ESI-FTICR-MS/MS) using a sustained off-resonance irradiation (SORI) collision-induced dissociation (CID) method at high mass resolution. The experimental results demonstrated that the unambiguous elemental composition of product ions can be obtained at high mass resolution. Comparing MS/MS spectra and the experimental methods of hydrogen and deuterium exchange, the logical fragmentation pathways of paeoniflorin have been proposed. Then, the extracts of the traditional Chinese medicine Paeonia lactiflora Pall. were analyzed by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ESI-MS/MS). By comparison with the ESI-FTICR-MS/MS data of paeoniflorin, the isomers paeoniflorin and albiflorin in Paeonia lactiflora Pall. have been identified using HPLC/MS with CID in an ion trap and in-source CID. Furthermore, using the characteristic fragmentation pathways, the retention times (t(R)) in HPLC and MS/MS spectra, the structures of three other kinds of monoterpene glycoside compounds have been identified on-line without time-consuming isolation.