920 resultados para MALATE DEHYDROGENASE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Sequencing based mutation screening assays of genes encompassing large numbers of exons could be substantially optimized by multiplex PCR, which enables simultaneous amplification of many targets in one reaction. In the present study, a multiplex PCR protocol originally developed for fragment analysis was evaluated for sequencing based mutation screening of the ornithine transcarbamylase (OTC) and the medium-chain acyl-CoA dehydrogenase (MCAD) genes. METHODS: Single exon and multiplex PCR protocols were applied to generate PCR templates for subsequent DNA sequencing of all exons of the OTC and the MCAD genes. For each PCR protocol and using the same DNA samples, 66 OTC and 98 MCAD sequence reads were generated. The sequences derived from the two different PCR methods were compared at the level of individual signal-to-noise ratios of the four bases and the proportion of high-quality base-signals. RESULTS: The single exon and the multiplex PCR protocol gave qualitatively comparable results for the two genes. CONCLUSIONS: Many existing sequencing based mutation analysis protocols may be easily optimized with the proposed method, since the multiplex PCR protocol was successfully applied without any re-design of the PCR primers and other optimization steps for generating sequencing templates for the OTC and MCAD genes, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elevated glucocorticoids are a key risk factor for metabolic diseases, and the glucocorticoid-activating enzyme 11beta-hydroxysteroid dehydrogenase 1 (11beta-HSD1) represents a promising therapeutic target. We measured the potential of six traditional antidiabetic medicinal plants extracts to inhibit 11beta-HSD1 activity and glucocorticoid receptor (GR) activation in transfected HEK-293 cells. Leave extracts of Eriobotrya japonica preferentially inhibited 11beta-HSD1 over 11beta-HSD2. Extracts of roasted but not native coffee beans preferentially inhibited 11beta-HSD1 over 11beta-HSD2, emphasizing the importance of sample preparation. Thus, natural compounds inhibiting 11beta-HSD1 may contribute to the antidiabetic effect of the investigated plant extracts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vitamin A is a nutrient with remarkable effects on adipose tissue and skeletal muscles, and plays a role in controlling energy balance. Retinoic acid (RA), the carboxylic form of vitamin A, has been associated with improved glucose tolerance and insulin sensitivity. In contrast, elevated glucocorticoids have been implicated in the development of insulin resistance and impaired glucose tolerance. Here, we investigated whether RA might counteract glucocorticoid effects in skeletal muscle cells by lowering 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1)-dependent local glucocorticoid activation and/or activation of glucocorticoid receptor (GR). We found a dose-dependent down-regulation of 11beta-HSD1 mRNA expression and activity upon incubation of fully differentiated mouse C2C12 myotubes with RA. In addition, RA inhibited GR transactivation by an 11beta-HSD1-independent mechanism. The presence of RA during myogenesis did not prevent myotube formation but resulted in relatively glucocorticoid-resistant myotubes, exhibiting very low 11beta-HSD1 expression and GR activity. The use of selective retinoic acid receptor (RAR) and retinoid X receptor ligands provided evidence that these effects were mediated through RARgamma. Importantly, short hairpin RNA against RARgamma abolished the effect of RA on 11beta-HSD1 and GR. In conclusion, we provide evidence for an important role of RA in the control of glucocorticoid activity during myogenesis and in myotubes. Disturbances of the nutrient and hormonal regulation of glucocorticoid action in skeletal muscles might be relevant for metabolic diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a family with malignant sympathetic paragangliomas (PGL) exhibiting a new type of germline mutation in the succinate dehydrogenase subunit B (SDHB) gene. Two affected brothers, presenting with symptoms at the ages of 25 and 52 yr, suffered from malignant abdominal extraadrenal sympathetic PGL. They died of their disease at ages 43 and 61 yr. Their mother had the same history of signs and symptoms, suggesting a catecholamine-producing tumor at the age of 55 yr. Analysis of the germline DNA from these three patients revealed a novel mutation in exon 4 (H132P) of the SDHB gene. This mutation was absent in 160 control chromosomes. Loss of heterozygosity analysis of the tumors showed a loss of one SDHB allele, and RT-PCR-based expression analysis confirmed the exclusive expression of the mutated allele in both tumors. A review of the published PGL families revealed malignant tumors in seven of 12 well-documented families with SDHB mutation-associated extraadrenal PGL. These findings, as well as findings of the family reported here, suggest a strong causal relationship of SDHB germline mutations with malignant extraadrenal abdominal PGL and imply the necessity of a close follow-up of affected individuals and family members.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human steroid biosynthesis depends on a specifically regulated cascade of enzymes including 3β-hydroxysteroid dehydrogenases (HSD3Bs). Type 2 HSD3B catalyzes the conversion of pregnenolone, 17α-hydroxypregnenolone and dehydroepiandrosterone to progesterone, 17α-hydroxyprogesterone and androstenedione in the human adrenal cortex and the gonads but the exact regulation of this enzyme is unknown. Therefore, specific downregulation of HSD3B2 at adrenarche around age 6-8 years and characteristic upregulation of HSD3B2 in the ovaries of women suffering from the polycystic ovary syndrome remain unexplained prompting us to study the regulation of HSD3B2 in adrenal NCI-H295R cells. Our studies confirm that the HSD3B2 promoter is regulated by transcription factors GATA, Nur77 and SF1/LRH1 in concert and that the NBRE/Nur77 site is crucial for hormonal stimulation with cAMP. In fact, these three transcription factors together were able to transactivate the HSD3B2 promoter in placental JEG3 cells which normally do not express HSD3B2. By contrast, epigenetic mechanisms such as methylation and acetylation seem not involved in controlling HSD3B2 expression. Cyclic AMP was found to exert differential effects on HSD3B2 when comparing short (acute) versus long-term (chronic) stimulation. Short cAMP stimulation inhibited HSD3B2 activity directly possibly due to regulation at co-factor or substrate level or posttranslational modification of the protein. Long cAMP stimulation attenuated HSD3B2 inhibition and increased HSD3B2 expression through transcriptional regulation. Although PKA and MAPK pathways are obvious candidates for possibly transmitting the cAMP signal to HSD3B2, our studies using PKA and MEK1/2 inhibitors revealed no such downstream signaling of cAMP. However, both signaling pathways were clearly regulating HSD3B2 expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE Women with epilepsy apparently have a higher incidence of polycystic ovary syndrome (PCOS) than do women without epilepsy. Whether the underlying disease or the antiepileptic drug (AED) treatment is responsible for this increased risk is unknown, although clinical reports implicate valproic acid (VPA) as a potential cause. The steroidogenic enzymes 3beta HSDII (3beta-hydroxysteroid dehydrogenase) and P450c17 (17alpha-hydroxylase/17,20 lyase) are essential for C19 steroid biosynthesis, which is enhanced during adrenarche and in PCOS. METHODS To determine whether the AEDs VPA, carbamazepine (CBZ), topiramate (TPM), or lamotrigine (LYG) directly affect the activities of human 3beta HSDII and P450c17, we added them to yeast expressing human P450c17 or 3beta HSDII and assayed enzymatic activities in the microsomal fraction. RESULTS Concentrations of VPA < or = 10 mM had no effect on activities of P450c17; however, VPA inhibited 3beta HSDII activity starting at 0.3 mM (reference serum unbound concentration, 0.035-0.1 mM) with an IC50 of 10.1 mM. CBZ, TPM, and LTG did not influence 3beta HSDII or P450c17 activities at typical reference serum unbound concentrations, but did inhibit 3beta HSDII and P450c17 at concentrations >10-fold higher. CONCLUSIONS None of the tested AEDs influenced 3beta HSDII or P450c17 activities at concentrations normally used in AED therapy. However, VPA started to inhibit 3beta HSDII activity at concentrations 3 times above the typical reference serum unbound concentration. Because inhibition of 3beta HSDII activity will shift steroidogenesis toward C19 steroid production when P450c17 activities are unchanged, very high doses of VPA may promote C19 steroid biosynthesis, thus resembling PCOS. CBZ, TPM, and LTG influenced 3beta HSDII and P450c17 only at toxic concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been demonstrated previously that the mammalian heart cannot sustain physiologic levels of pressure-volume work if ketone bodies are the only substrates for respiration. In order to determine the metabolic derangement responsible for contractile failure in hearts utilizing ketone bodies, rat hearts were prefused at a near-physiologic workload in a working heart apparatus with acetoacetate and competing or alternate substrates including glucose, lactate, pyruvate, propionate, leucine, isoleucine, valine and acetate. While the pressure-volume work for hearts utilizing glucose was stable for 60 minutes of perfusion, performance fell by 30 minutes for hearts oxidizing acetoacetate as the sole substrate. The tissue content of 2-oxoglutarate and its transamination product, glutamate, were elevated in hearts utilizing acetoacetate while succinyl-CoA was decreased suggesting impaired flux through the citric acid cycle at the level of 2-oxoglutarate dehydrogenase. Further studies indicated that the inhibition of 2-oxoglutarate dehydrogenase developed prior to the onset of contractile failure and that the inhibition of the enzyme may be related to sequestration of the required cofactor, coenzyme A, as the thioesters acetoacetyl-CoA and acetyl-CoA. The contractile failure was not observed when glucose, lactate, pyruvate, propionate, valine or isoleucine were present together with acetoacetate, but the addition of acetate or leucine to acetoacetate did not improve performance indicating that improved performance is not mediated through the provision of additional acetyl-CoA. Furthermore, addition of competing substrates that improved function did not relieve the inhibition of 2-oxoglutarate dehydrogenase and actually resulted in the further accumulation of citric acid cycle intermediates "upstream" of 2-oxoglutarate dehydrogenase (2-oxoglutarate, glutamate, citrate and malate). Studies with (1-$\sp{14}$C) pyruvate indicate that the utilization of ketone bodies is associated with activation of NADP$\sp+$dependent malic enzyme and enrichment of the C4 pool of the citric acid cycle. The results suggest that contractile failure induced by ketone bodies in rat heart results from inhibition of 2-oxoglutarate dehydrogenase and that reversal of contractile failure is dissociated from relief of the inhibition, but rather is due to the entry of carbon units into the citric acid cycle as compounds other than acetyl-CoA. This mechanism of enrichment (anaplerosis) provides oxaloacetate for condensation with acetyl-CoA derived from ketone bodies allowing continued energy production by sustaining flux through a span of the citric acid cycle up to the point of inhibition at 2-oxoglutarate dehydrogenase for energy production thereby producing the reducing equivalents necessary to sustain oxidative phosphorylation. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

11Beta-hydroxsteroid dehydrogenase 2 (11beta-OHSD2) protects the nonselective renal mineralocorticoid receptor from the endogenous glucocorticoid cortisol. Thus, drugs inhibiting 11beta-OHSD2 might enhance urinary loss of potassium. As diuretics influence the renal handling of potassium, we analyzed the impact of 13 commonly used diuretics on 11beta-OHSD2. Furosemide was the only inhibitor. Its inhibition constant (Ki) was 30 micromol when extracts from COS-1 cells transfected with human 11beta-OHSD2 were used as an enzyme source. The type of inhibition was competitive. To establish whether furosemide inhibits 11beta-OHSD2 and 11beta-OHSD1 in the renal target tissue, isolated tubular segments from rats were analyzed. Furosemide decreased the oxidative activity of 11beta-OHSD2 in intact distal tubules and 11beta-OHSD1 in proximal convoluted tubules. For the assessment of furosemide on the excretion of corticosterone metabolites in vivo, rats were given furosemide i.p., and the ratio of tetrahydrocorticosterone plus 5alpha-tetrahydrocorticosterone to 11-dehydrotetrahydrocorticosterone was determined in urine. This ratio increased after the administration of furosemide in all animals, indicating inhibition of the oxidative activity of 11beta-OHSD. Thus, furosemide inhibits the 11beta-OHSD2 enzyme in the target tissue and might by that mechanism enhance the mineralocorticoid effect of 11beta-hydroxyglucocorticoids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1), catalyzing the intracellular activation of cortisone to cortisol, is currently considered a promising target to treat patients with metabolic syndrome; hence, there is considerable interest in the development of selective inhibitors. For preclinical tests of such inhibitors, the characteristics of 11beta-HSD1 from the commonly used species have to be known. Therefore, we determined differences in substrate affinity and inhibitor effects for 11beta-HSD1 from six species. The differences in catalytic activities with cortisone and 11-dehydrocorticosterone were rather modest. Human, hamster and guinea-pig 11beta-HSD1 displayed the highest catalytic efficiency in the oxoreduction of cortisone, while mouse and rat showed intermediate and dog the lowest activity. Murine 11beta-HSD1 most efficiently reduced 11-dehydrocorticosterone, while the enzyme from dog showed lower activity than those from the other species. 7-ketocholesterol (7KC) was stereospecifically converted to 7beta-hydroxycholesterol by recombinant 11beta-HSD1 from all species analyzed except hamster, which showed a slight preference for the formation of 7alpha-hydroxycholesterol. Importantly, guinea-pig and canine 11beta-HSD1 displayed very low 7-oxoreductase activities. Furthermore, we demonstrate significant species-specific variability in the potency of various 11beta-HSD1 inhibitors, including endogenous compounds, natural chemicals and pharmaceutical compounds. The results suggest significant differences in the three-dimensional organization of the hydrophobic substrate-binding pocket of 11beta-HSD1, and they emphasize that species-specific variability must be considered in the interpretation of results obtained from different animal experiments. The assessment of such differences, by cell-based test systems, may help to choose the appropriate animal for safety and efficacy studies of novel potential drug candidates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid pollen tube growth requires a high rate of sugar metabolism to meet energetic and biosynthetic demands. Previous work on pollen sugar metabolism showed that tobacco pollen carry out efficient ethanolic fermentation concomitantly with a high rate of respiration (Bucher et al ., 1995). Here we show that the products of fermentation, acetaldehyde and ethanol, are further metabolised in a pathway that bypasses mitochondrial PDH. The enzymes involved in this pathway are pyruvate decarboxylase, aldehyde dehydrogenase and acetyl-CoA synthetase. Radiolabelling experiments show that during tobacco pollen tube growth label of C-14-ethanol is incorporated into CO2 as well as into lipids and other higher molecular weight compounds. A role for the glyoxylate cycle appears unlikely since activity of malate synthase, a key enzyme of the glyoxylate cycle, could not be detected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diagnosis of osteoarthritis (OA) is based upon the clinical orthopaedic examination and the radiographic assessment, both of which can be non-specific and insensitive in early joint disease. The aim of our study was to investigate if there is an increase in serum levels of C-reactive protein (CRP) in degenerative joint disease (DJD) and if CRP could be used to help diagnose OA. We also wished to investigate whether it was possible to distinguish a joint with clinically and radiographically confirmed OA from a healthy joint by comparing lactate dehydrogenase (LDH) levels within the synovial fluid and the serum. We have shown a difference in synovial LDH levels between diseased and healthy joints (P<0.0001). There was also a significant difference between LDH in arthritic synovial fluid and serum, with no correlation between the values. Despite the fact that the values of our clinical patients tended to be higher than the values of our control group (P=0.05) all measured values were within the normal limits of previous publications. From these data, we conclude that single measurements of serum CRP do not permit detection of OA in clinical patients and that serum LDH is not a reliable marker for osteoarthritis. LDH levels in the synovial fluid could be of diagnostic value for identifying osteoarthritis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Multiple acyl-CoA dehydrogenase deficiency- (MADD-), also called glutaric aciduria type 2, associated leukodystrophy may be severe and progressive despite conventional treatment with protein- and fat-restricted diet, carnitine, riboflavin, and coenzyme Q10. Administration of ketone bodies was described as a promising adjunct, but has only been documented once. METHODS We describe a Portuguese boy of consanguineous parents who developed progressive muscle weakness at 2.5 y of age, followed by severe metabolic decompensation with hypoglycaemia and coma triggered by a viral infection. Magnetic resonance (MR) imaging showed diffuse leukodystrophy. MADD was diagnosed by biochemical and molecular analyses. Clinical deterioration continued despite conventional treatment. Enteral sodium D,L-3-hydroxybutyrate (NaHB) was progressively introduced and maintained at 600 mg/kg BW/d (≈3% caloric need). Follow up was 3 y and included regular clinical examinations, biochemical studies, and imaging. RESULTS During follow up, the initial GMFC-MLD (motor function classification system, 0 = normal, 6 = maximum impairment) level of 5-6 gradually improved to 1 after 5 mo. Social functioning and quality of life recovered remarkably. We found considerable improvement of MR imaging and spectroscopy during follow up, with a certain lag behind clinical recovery. There was some persistent residual developmental delay. CONCLUSION NaHB is a highly effective and safe treatment that needs further controlled studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose-6-phosphate dehydrogenase (G6PD) deficiency, a frequent congenital human enzyme defect, is the most frequent cause of hemolytic anemia triggered by drugs or infectious diseases. Drugs which induce acute hemolysis in patients with G6PD deficiency are often used in anesthesia and perioperative pain therapy. Considering the fact that patients from geographic regions with a high prevalence of the disease are often treated in European hospitals, special attention should be paid to this problem. We report a case of a 30-year-old female patient with favism and review the disease and anesthesia-related implications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the clinical relevance of dihydropyrimidine dehydrogenase gene (DPYD) variants to predict severe early-onset fluoropyrimidine (FP) toxicity, in particular of a recently discovered haplotype hapB3 and a linked deep intronic splice site mutation c.1129-5923C>G. Selected regions of DPYD were sequenced in prospectively collected germline DNA of 500 patients receiving FP-based chemotherapy. Associations of DPYD variants and haplotypes with hematologic, gastrointestinal, infectious, and dermatologic toxicity in therapy cycles 1-2 and resulting FP-dose interventions (dose reduction, therapy delay or cessation) were analyzed accounting for clinical and demographic covariates. Fifteen additional cases with toxicity-related therapy delay or cessation were retrospectively examined for risk variants. The association of c.1129-5923C>G/hapB3 (4.6% carrier frequency) with severe toxicity was replicated in an independent prospective cohort. Overall, c.1129-5923G/hapB3 carriers showed a relative risk of 3.74 (RR, 95% CI = 2.30-6.09, p = 2 × 10(-5)) for severe toxicity (grades 3-5). Of 31 risk variant carriers (c.1129-5923C>G/hapB3, c.1679T>G, c.1905+1G>A or c.2846A>T), 11 (all with c.1129-5923C>G/hapB3) experienced severe toxicity (15% of 72 cases, RR = 2.73, 95% CI = 1.61-4.63, p = 5 × 10(-6)), and 16 carriers (55%) required FP-dose interventions. Seven of the 15 (47%) retrospective cases carried a risk variant. The c.1129-5923C>G/hapB3 variant is a major contributor to severe early-onset FP toxicity in Caucasian patients. This variant may substantially improve the identification of patients at risk of FP toxicity compared to established DPYD risk variants (c.1905+1G>A, c.1679T>G and c.2846A>T). Pre-therapeutic DPYD testing may prevent 20-30% of life-threatening or lethal episodes of FP toxicity in Caucasian patients.