989 resultados para MAC OBS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

O reactor “Fed-batch” Proporcional utiliza o aumento de pressão que se verifica no interior do reactor, provocado pela acumulação do dióxido de carbono produzido no decurso da degradação aeróbia de um composto orgânico, para adicionar substrato ao reactor, sendo a alimentação proporcional à velocidade ou taxa de degradação de substrato. Nestas circunstâncias, e pretendendo-se avaliar da fiabilidade daquele tipo de reactor, era necessário verificar se a reacção biológica era perturbada pela acumulação de dióxido de carbono. Assim, o presente trabalho teve por objectivo estudar a influência do dióxido de carbono, dissolvido na solução de fermentação, no crescimento microbiano e no consumo de substrato, através da comparação do funcionamento, em paralelo, de dois reactores “fed-batch”, sendo um proporcional e outro aberto. Constatou-se que os valores das constantes cinéticas, taxa específica de consumo de substrato (qobs) e coeficiente de rendimento celular (Y(X/S)), determinados no reactor “Fed-batch” Proporcional e num reactor “Fed-batch” Aberto, operados em condições equivalentes, eram semelhantes. Os valores da taxa de crescimento específica (μobs) apresentam diferenças mais significativas, no entanto a maioria dos testes estatísticos não-paramétricos aplicados demonstraram que o conjunto de valores de cada reactor pertencem à mesma distribuição. A taxa de consumo de oxigénio (OUR), que reflecte a viabilidade da biomassa, é normalmente superior no reactor “Fed-batch” Aberto. Os resultados obtidos no presente estudo não evidenciaram efeitos inibidores, para a reacção biológica, provocados pelo dióxido de carbono dissolvido, ou pelos iões bicarbonato que se acumulam no reactor “Fed-batch” Proporcional.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stringent cost and energy constraints impose the use of low-cost and low-power radio transceivers in large-scale wireless sensor networks (WSNs). This fact, together with the harsh characteristics of the physical environment, requires a rigorous WSN design. Mechanisms for WSN deployment and topology control, MAC and routing, resource and mobility management, greatly depend on reliable link quality estimators (LQEs). This paper describes the RadiaLE framework, which enables the experimental assessment, design and optimization of LQEs. RadiaLE comprises (i) the hardware components of the WSN testbed and (ii) a software tool for setting-up and controlling the experiments, automating link measurements gathering through packets-statistics collection, and analyzing the collected data, allowing for LQEs evaluation. We also propose a methodology that allows (i) to properly set different types of links and different types of traffic, (ii) to collect rich link measurements, and (iii) to validate LQEs using a holistic and unified approach. To demonstrate the validity and usefulness of RadiaLE, we present two case studies: the characterization of low-power links and a comparison between six representative LQEs. We also extend the second study for evaluating the accuracy of the TOSSIM 2 channel model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Significant research efforts are being devoted to Body Area Networks (BAN) due to their potential for revolutionizing healthcare practices. Energy-efficiency and communication reliability are critically important for these networks. In an experimental study with three different mote platforms, we show that changes in human body shadowing as well as those in the relative distance and orientation of nodes caused by the common human body movements can result in significant fluctuations in the received signal strength within a BAN. Furthermore, regular movements, such as walking, typically manifest in approximately periodic variations in signal strength. We present an algorithm that predicts the signal strength peaks and evaluate it on real-world data. We present the design of an opportunistic MAC protocol, named BANMAC, that takes advantage of the periodic fluctuations of the signal strength to achieve high reliability even with low transmission power.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radio interference drastically affects the performance of sensor-net communications, leading to packet loss and reduced energy-efficiency. As an increasing number of wireless devices operates on the same ISM frequencies, there is a strong need for understanding and debugging the performance of existing sensornet protocols under interference. Doing so requires a low-cost flexible testbed infrastructure that allows the repeatable generation of a wide range of interference patterns. Unfortunately, to date, existing sensornet testbeds lack such capabilities, and do not permit to study easily the coexistence problems between devices sharing the same frequencies. This paper addresses the current lack of such an infrastructure by using off-the-shelf sensor motes to record and playback interference patterns as well as to generate customizable and repeat-able interference in real-time. We propose and develop JamLab: a low-cost infrastructure to augment existing sensornet testbeds with accurate interference generation while limiting the overhead to a simple upload of the appropriate software. We explain how we tackle the hardware limitations and get an accurate measurement and regeneration of interference, and we experimentally evaluate the accuracy of JamLab with respect to time, space, and intensity. We further use JamLab to characterize the impact of interference on sensornet MAC protocols.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an algorithm for bandwidth allocation for delay-sensitive traffic in multi-hop wireless sensor networks. Our solution considers both periodic as well as aperiodic real-time traffic in an unified manner. We also present a distributed MAC protocol that conforms to the bandwidth allocation and thus satisfies the latency requirements of realtime traffic. Additionally, the protocol provides best-effort service to non real-time traffic. We derive the utilization bounds of our MAC protocol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) emerge as underlying infrastructures for new classes of large-scale networked embedded systems. However, WSNs system designers must fulfill the quality-of-service (QoS) requirements imposed by the applications (and users). Very harsh and dynamic physical environments and extremely limited energy/computing/memory/communication node resources are major obstacles for satisfying QoS metrics such as reliability, timeliness, and system lifetime. The limited communication range of WSN nodes, link asymmetry, and the characteristics of the physical environment lead to a major source of QoS degradation in WSNs-the ldquohidden node problem.rdquo In wireless contention-based medium access control (MAC) protocols, when two nodes that are not visible to each other transmit to a third node that is visible to the former, there will be a collision-called hidden-node or blind collision. This problem greatly impacts network throughput, energy-efficiency and message transfer delays, and the problem dramatically increases with the number of nodes. This paper proposes H-NAMe, a very simple yet extremely efficient hidden-node avoidance mechanism for WSNs. H-NAMe relies on a grouping strategy that splits each cluster of a WSN into disjoint groups of non-hidden nodes that scales to multiple clusters via a cluster grouping strategy that guarantees no interference between overlapping clusters. Importantly, H-NAMe is instantiated in IEEE 802.15.4/ZigBee, which currently are the most widespread communication technologies for WSNs, with only minor add-ons and ensuring backward compatibility with their protocols standards. H-NAMe was implemented and exhaustively tested using an experimental test-bed based on ldquooff-the-shelfrdquo technology, showing that it increases network throughput and transmission success probability up to twice the values obtained without H-NAMe. H-NAMe effectiveness was also demonstrated in a target tracking application with mobile robots - over a WSN deployment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Consider a wireless sensor network (WSN) where a broadcast from a sensor node does not reach all sensor nodes in the network; such networks are often called multihop networks. Sensor nodes take individual sensor readings, however, in many cases, it is relevant to compute aggregated quantities of these readings. In fact, the minimum and maximum of all sensor readings at an instant are often interesting because they indicate abnormal behavior, for example if the maximum temperature is very high then it may be that a fire has broken out. In this context, we propose an algorithm for computing the min or max of sensor readings in a multihop network. This algorithm has the particularly interesting property of having a time complexity that does not depend on the number of sensor nodes; only the network diameter and the range of the value domain of sensor readings matter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose an efficient algorithm to estimate the number of live computer nodes in a network. This algorithm is fully distributed, and has a time-complexity which is independent of the number of computer nodes. The algorithm is designed to take advantage of a medium access control (MAC) protocol which is prioritized; that is, if two or more messages on different nodes contend for the medium, then the node contending with the highest priority will win, and all nodes will know the priority of the winner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We focus on large-scale and dense deeply embedded systems where, due to the large amount of information generated by all nodes, even simple aggregate computations such as the minimum value (MIN) of the sensor readings become notoriously expensive to obtain. Recent research has exploited a dominance-based medium access control(MAC) protocol, the CAN bus, for computing aggregated quantities in wired systems. For example, MIN can be computed efficiently and an interpolation function which approximates sensor data in an area can be obtained efficiently as well. Dominance-based MAC protocols have recently been proposed for wireless channels and these protocols can be expected to be used for achieving highly scalable aggregate computations in wireless systems. But no experimental demonstration is currently available in the research literature. In this paper, we demonstrate that highly scalable aggregate computations in wireless networks are possible. We do so by (i) building a new wireless hardware platform with appropriate characteristics for making dominance-based MAC protocols efficient, (ii) implementing dominance-based MAC protocols on this platform, (iii) implementing distributed algorithms for aggregate computations (MIN, MAX, Interpolation) using the new implementation of the dominance-based MAC protocol and (iv) performing experiments to prove that such highly scalable aggregate computations in wireless networks are possible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The availability of small inexpensive sensor elements enables the employment of large wired or wireless sensor networks for feeding control systems. Unfortunately, the need to transmit a large number of sensor measurements over a network negatively affects the timing parameters of the control loop. This paper presents a solution to this problem by representing sensor measurements with an approximate representation-an interpolation of sensor measurements as a function of space coordinates. A priority-based medium access control (MAC) protocol is used to select the sensor messages with high information content. Thus, the information from a large number of sensor measurements is conveyed within a few messages. This approach greatly reduces the time for obtaining a snapshot of the environment state and therefore supports the real-time requirements of feedback control loops.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The IEEE 802.15.4 is the most widespread used protocol for Wireless Sensor Networks (WSNs) and it is being used as a baseline for several higher layer protocols such as ZigBee, 6LoWPAN or WirelessHART. Its MAC (Medium Access Control) supports both contention-free (CFP, based on the reservation of guaranteed time-slots GTS) and contention based (CAP, ruled by CSMA/CA) access, when operating in beacon-enabled mode. Thus, it enables the differentiation between real-time and best-effort traffic. However, some WSN applications and higher layer protocols may strongly benefit from the possibility of supporting more traffic classes. This happens, for instance, for dense WSNs used in time-sensitive industrial applications. In this context, we propose to differentiate traffic classes within the CAP, enabling lower transmission delays and higher success probability to timecritical messages, such as for event detection, GTS reservation and network management. Building upon a previously proposed methodology (TRADIF), in this paper we outline its implementation and experimental validation over a real-time operating system. Importantly, TRADIF is fully backward compatible with the IEEE 802.15.4 standard, enabling to create different traffic classes just by tuning some MAC parameters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

WiDom is a wireless prioritized medium access control (MAC) protocol which offers a very large number of priority levels. Hence, it brings the potential for employing non-preemptive static-priority scheduling and schedulability analysis for a wireless channel assuming that the overhead of WiDom is modeled properly. One schedulability analysis for WiDom has already been proposed but recent research has created a new version of WiDom with lower overhead (we call it: WiDom with a master node) and for this version of WiDom no schedulability analysis exists. Also, common to the previously proposed schedulability analyses for WiDom is that they cannot analyze message streams with release jitter. Therefore, in this paper we propose a new schedulability analysis for WiDom (with a master node). We also extend the WiDom analyses (with and without master node) to work also for message streams with release jitter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we address the problem of sharing a wireless channel among a set of sporadic message streams where a message stream issues transmission requests with real-time deadlines. We propose a collision-free wireless medium access control (MAC) protocol which implements static-priority scheduling, supports a large number of priority levels and is fully distributed. It is an adaptation to a wireless channel of the dominance protocol used in the CAN bus. But, unlike that protocol, our protocol does not require a node having the ability to receive an incoming bit from the channel while transmitting to the channel. The evaluation of the protocol with real embedded computing platforms is presented to show that the proposed protocol is in fact collision-free and prioritized. We measure the response times of our implementation and show that the response-time analysis developed for the protocol offers an upper bound on the response times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a wireless medium access control (MAC) protocol that provides static-priority scheduling of messages in a guaranteed collision-free manner. Our protocol supports multiple broadcast domains, resolves the wireless hidden terminal problem and allows for parallel transmissions across a mesh network. Arbitration of messages is achieved without the notion of a master coordinating node, global clock synchronization or out-of-band signaling. The protocol relies on bit-dominance similar to what is used in the CAN bus except that in order to operate on a wireless physical layer, nodes are not required to receive incoming bits while transmitting. The use of bit-dominance efficiently allows for a much larger number of priorities than would be possible using existing wireless solutions. A MAC protocol with these properties enables schedulability analysis of sporadic message streams in wireless multihop networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Consider a wireless network where links may be unidirectional, that is, a computer node A can broadcast a message and computer node B will receive this message but if B broadcasts then A will not receive it. Assume that messages have deadlines. We propose a medium access control (MAC) protocol which replicates a message in time with carefully selected pauses between replicas, and in this way it guarantees that for every message at least one replica of that message is transmitted without collision. The protocol ensures this with no knowledge of the network topology and it requires neither synchronized clocks nor carrier sensing capabilities. We believe this result is significant because it is the only MAC protocol that offers an upper bound on the message queuing delay for unidirectional links without relying on synchronized clocks.