981 resultados para Lunar geology.
Resumo:
The engineer must have sufficient theoretical knowledge to be applied to solve specific problems, with the necessary capacity to simplify these approaches, and taking into account factors such as speed, simplicity, quality and economy. In Geology, its ultimate goal is the exploration of the history of the geological events through observation, deduction, reasoning and, in exceptional cases by the direct underground exploration or experimentation. Experimentation is very limited in Geology. Reproduction laboratory of certain phenomena or geological processes is difficult because both time and space become a large scale. For this reason, some Earth Sciences are in a nearly descriptive stage whereas others closest to the experimental, Geophysics and Geochemistry, have assimilated progress experienced by the physics and chemistry. Thus, Anglo-Saxon countries clearly separate Engineering Geology from Geological Engineering, i.e. Applied Geology to the Geological Engineering concepts. Although there is a big professional overlap, the first one corresponds to scientific approach, while the last one corresponds to a technological one. Applied Geology to Engineering could be defined as the Science and Applied Geology to the design, construction and performance of engineering infrastructures in and field geology discipline. There has been much discussion on the primacy of theory over practice. Today prevails the exaggeration of practice, but you get good workers and routine and mediocre teachers. This idea forgets too that teaching problem is a problem of right balance. The approach of the action lines on the European Higher Education Area (EHEA) framework provides for such balance. Applied Geology subject represents the first real contact with the physical environment with the practice profession and works. Besides, the situation of the topic in the first trace of Study Plans for many students implies the link to other subjects and topics of the career (tunnels, dams, groundwater, roads, etc). This work analyses in depth the justification of such practical trips. It shows the criteria and methods of planning and the result which manifests itself in pupils. Once practical trips experience developed, the objective work tries to know about results and changes on student’s motivation in learning perspective. This is done regardless of the outcome of their knowledge achievements assessed properly and they are not subject to such work. For this objective, it has been designed a survey about their motivation before and after trip. Survey was made by the Unidad Docente de Geología Aplicada of the Departamento de Ingeniería y Morfología del Terreno (Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid). It was completely anonymous. Its objective was to collect the opinion of the student as a key agent of learning and teaching of the subject. All the work takes place under new teaching/learning criteria approach at the European framework in Higher Education. The results are exceptionally good with 90% of student’s participation and with very high scores in a number of questions as the itineraries, teachers and visited places (range of 4.5 to 4.2 in a 5 points scale). The majority of students are very satisfied (average of 4.5 in a 5 points scale).
Resumo:
There has been much discussion on the primacy of theory over practice. Today prevails the exaggeration of practice. This idea forgets too that teaching problem is a problem of right balance. The approach of the action lines on the European Higher Education Area (EHEA) framework provides for such balance. Applied Geology subject represents the first real contact with the physical environment with the practice profession and works. Besides, the situation of the topic in the first trace of Study Plans for many students implies the link to other subjects and topics of the career. This work analyses in depth the justification of such practical trips only on Applied Geology. This methodology could be usual in Study Plans of pure sciences career, Geology or Biology, but not in Civil Engineering like teaching method. It shows the criteria and methods of planning and the result which manifests itself in pupils. Therefore, work shows a methodology taking in account the engineering perspective, the practical point of view and the learning process inside students and their evaluation and, hence, their marks.
Resumo:
Una de las maneras más efectivas para asentar conocimientos se produce cuando, además de realizar un aprendizaje práctico, se intentan transmitir a otra persona. De hecho, los alumnos muchas veces prestan más atención a sus compañeros que al profesor. En la E.T.S.I. Minas de Madrid se ha llevado a cabo un programa de innovación educativa en asignaturas relacionadas con la Geología mediante nuevas tecnologías para mejorar el aprendizaje basado en el trabajo práctico personal del alumno, con la realización de vídeos en el medio físico (campo) en los que explican los aspectos geológicos visibles a diferentes escalas. Estos vídeos se han subido a las plataformas “moodle”, “facebook” y canal “youtube” donde compañeros, alumnos de otras Universidades y personas interesadas pueden consultarlos. De esta manera se pretende que, además de adquirir conocimientos geológicos, los alumnos adquieren el hábito de expresarse en público con un lenguaje técnico. Los alumnos manifestaron su satisfacción por esta actividad, aunque idea del rodaje de vídeos no resultó inicialmente muy popular. Se ha observado una mejora en las calificaciones, así como un incremento de la motivación. De hecho, los estudiantes manifestaron haber adquirido, además de los conceptos geológicos, seguridad a la hora de expresarse en público. Palabras clave: innovación educativa, nuevas tecnologías (TIC), Geología Abstract- Knowledge is gained by practice, but one of the most effective ways is when one tries to transmit it to others. Likewise, students pay more attention to their classmates than to teachers. In the Geological Engineering Department of the Madrid School of Mines, we have run an educational innovation program in courses related to Geology using new technologies (ITC) in order to increase the acquisition of geological knowledge. This program is designed mainly on the basis of individual and group work with video recordings in the field in which students explain geological concepts at various scales. These videos have been uploaded to the “Moodle”, “Facebook” and “YouTube” channel of the Madrid School of Mines, where other students from the same university or elsewhere can view them. Students acquire geological knowledge and the ability to address the general public using technical language. The realization of these videos has been warmly welcomed by students. Notably, they show increased motivation, accompanied by an improvement in grades, although at the beginning this program was not very popular because of student insecurity. Students have expressed that they learnt geological concepts but also gained confidence in public speaking using technical language
Resumo:
For long enough tethers, the coupling of the attitude and orbital dynamics may show non-negligible effects in the orbital motion of a tethered satellite about a central body. In the case of fast rotating tethers the attitude remains constant, on average, up to second order effects. Besides, for a tether rotating in a plane parallel to the equatorial plane of the central body, the attitude?orbit coupling effect is formally equal to the perturbation of the Keplerian motion produced by the oblateness of the central body and, therefore, may have a stabilizing effect in the orbital dynamics. In the case of a tethered satellite in a low lunar orbit, it is demonstrated that feasible tether lengths can help in modifying the actual map of lunar frozen orbits
Resumo:
This paper demonstrates the importance of a holistic comprehension of the Earth like a planet that is alive, not only in its Biosphere, looking at the atmosphere-ocean-crust-mantle interactions as its different sectorial expressions (climate, fluid-dynamics, morpho-dynamics, tectonics…) following the solar radiation and nuclear geothermal sources of energy. It considers the environmental incidence of different engineering activities to realize their underfeeding as the raison, and leads to that holistic formation as the being of the engineering geology
Resumo:
(1878 printing)
Resumo:
Symmetries have played an important role in a variety of problems in geology and geophysics. A large fraction of studies in mineralogy are devoted to the symmetry properties of crystals. In this paper, however, the emphasis will be on scale-invariant (fractal) symmetries. The earth’s topography is an example of both statistically self-similar and self-affine fractals. Landforms are also associated with drainage networks, which are statistical fractal trees. A universal feature of drainage networks and other growth networks is side branching. Deterministic space-filling networks with side-branching symmetries are illustrated. It is shown that naturally occurring drainage networks have symmetries similar to diffusion-limited aggregation clusters.
Resumo:
Landforms and earthquakes appear to be extremely complex; yet, there is order in the complexity. Both satisfy fractal statistics in a variety of ways. A basic question is whether the fractal behavior is due to scale invariance or is the signature of a broadly applicable class of physical processes. Both landscape evolution and regional seismicity appear to be examples of self-organized critical phenomena. A variety of statistical models have been proposed to model landforms, including diffusion-limited aggregation, self-avoiding percolation, and cellular automata. Many authors have studied the behavior of multiple slider-block models, both in terms of the rupture of a fault to generate an earthquake and in terms of the interactions between faults associated with regional seismicity. The slider-block models exhibit a remarkably rich spectrum of behavior; two slider blocks can exhibit low-order chaotic behavior. Large numbers of slider blocks clearly exhibit self-organized critical behavior.
Resumo:
no.2(1922)
Resumo:
v.16:no.2(1966)
Resumo:
no.10(1929)