881 resultados para Low Speed Switched Reluctance Machine
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Models of visual motion processing that introduce priors for low speed through Bayesian computations are sometimes treated with scepticism by empirical researchers because of the convenient way in which parameters of the Bayesian priors have been chosen. Using the effects of motion adaptation on motion perception to illustrate, we show that the Bayesian prior, far from being convenient, may be estimated on-line and therefore represents a useful tool by which visual motion processes may be optimized in order to extract the motion signals commonly encountered in every day experience. The prescription for optimization, when combined with system constraints on the transmission of visual information, may lead to an exaggeration of perceptual bias through the process of adaptation. Our approach extends the Bayesian model of visual motion proposed byWeiss et al. [Weiss Y., Simoncelli, E., & Adelson, E. (2002). Motion illusions as optimal perception Nature Neuroscience, 5:598-604.], in suggesting that perceptual bias reflects a compromise taken by a rational system in the face of uncertain signals and system constraints. © 2007.
Resumo:
The current optical communications network consists of point-to-point optical transmission paths interconnected with relatively low-speed electronic switching and routing devices. As the demand for capacity increases, then higher speed electronic devices will become necessary. It is however hard to realise electronic chip-sets above 10 Gbit/s, and therefore to increase the achievable performance of the network, electro-optic and all-optic switching and routing architectures are being investigated. This thesis aims to provide a detailed experimental analysis of high-speed optical processing within an optical time division multiplexed (OTDM) network node. This includes the functions of demultiplexing, 'drop and insert' multiplexing, data regeneration, and clock recovery. It examines the possibilities of combining these tasks using a single device. Two optical switching technologies are explored. The first is an all-optical device known as 'semiconductor optical amplifier-based nonlinear optical loop mirror' (SOA-NOLM). Switching is achieved by using an intense 'control' pulse to induce a phase shift in a low-intensity signal propagating through an interferometer. Simultaneous demultiplexing, data regeneration and clock recovery are demonstrated for the first time using a single SOA-NOLM. The second device is an electroabsorption (EA) modulator, which until this thesis had been used in a uni-directional configuration to achieve picosecond pulse generation, data encoding, demultiplexing, and 'drop and insert' multiplexing. This thesis presents results on the use of an EA modulator in a novel bi-directional configuration. Two independent channels are demultiplexed from a high-speed OTDM data stream using a single device. Simultaneous demultiplexing with stable, ultra-low jitter clock recovery is demonstrated, and then used in a self-contained 40 Gbit/s 'drop and insert' node. Finally, a 10 GHz source is analysed that exploits the EA modulator bi-directionality to increase the pulse extinction ratio to a level where it could be used in an 80 Gbit/s OTDM network.
Resumo:
Greenhouse cultivation is an energy intensive process therefore it is worthwhile to introduce energy saving measures and alternative energy sources. Here we show that there is scope for energy saving in fan ventilated greenhouses. Measurements of electricity usage as a function of fan speed have been performed for two models of 1.25 m diameter greenhouse fans and compared to theoretical values. Reducing the speed can cut the energy usage per volume of air moved by more than 70%. To minimize the capital cost of low-speed operation, a cooled greenhouse has been built in which the fan speed responds to sunlight such that full speed is reached only around noon. The energy saving is about 40% compared to constant speed operation. Direct operation of fans from solar-photovoltaic modules is also viable as shown from experiments with a fan driven by a brushless DC motor. On comparing the Net Present Value costs of the different systems over a 10 year amortization period (with and without a carbon tax to represent environmental costs) we find that sunlight-controlled system saves money under all assumptions about taxation and discount rates. The solar-powered system, however, is only profitable for very low discount rates, due to the high initial capital costs. Nonetheless this system could be of interest for its reliability in developing countries where mains electricity is intermittent. We recommend that greenhouse fan manufacturers improve the availability of energy-saving designs such as those described here.
Resumo:
One of the main characteristics of the world that we live in is the access to information and one of the main ways to reach the information is the Internet. Most Internet sites put accessibility problem on a secondary plan. If we try to define this concept (accessibility) we could say that accessibility it’s a way to offer access to information for the people with disabilities. For example blind people can’t navigate on the Internet like usual people. For that reason Internet sites have to put at their disposal ways to make their content known to this people. Accessibility does not refer only at blind people the web accessibility refers to all people who lost their ability to access the Internet sites. The web accessibility includes every disability that stops people with disabilities to access the web sites content like hearing disability, neurological and cognitive. People that have low speed Internet connection or with low performance computers can use the web accessibility.
Resumo:
Power converters are a key, but vulnerable component in switched reluctance motor (SRM) drives. In this paper, a new fault diagnosis scheme for SRM converters is proposed based on the wavelet packet decomposition (WPD) with a dc-link current sensor. Open- and short-circuit faults of the power switches in an asymmetrical half-bridge converter are analyzed in details. In order to obtain the fault signature from the phase currents, two pulse-width modulation signals with phase shift are injected into the lower-switches of the converter to extract the excitation current, and the WPD algorithm is then applied to the detected currents for fault diagnosis. Moreover, a discrete degree of the wavelet packet node energy is chosen as the fault coefficient. The converter faults can be diagnosed and located directly by determining the changes in the discrete degree from the detected currents. The proposed scheme requires only one current sensor in the dc link, while conventional methods need one sensor for each phase or additional detection circuits. The experimental results on a 750-W three-phase SRM are presented to confirm the effectiveness of the proposed fault diagnosis scheme.
Resumo:
The drag on a nacelle model was investigated experimentally and computationally to provide guidance and insight into the capabilities of RANS-based CFD. The research goal was to determine whether industry constrained CFD could participate in the aerodynamic design of nacelle bodies. Grid refinement level, turbulence model and near wall treatment settings, to predict drag to the highest accuracy, were key deliverables. Cold flow low-speed wind tunnel experiments were conducted at a Reynolds number of 6∙〖10〗^5, 293 K and a Mach number of 0.1. Total drag force was measured by a six-component force balance. Detailed wake analysis, using a seven-hole pressure probe traverse, allowed for drag decomposition via the far-field method. Drag decomposition was performed through a range of angles of attack between 0o and 45o. Both methods agreed on total drag within their respective uncertainties. Reversed flow at the measurement plane and saturation of the load cell caused discrepancies at high angles of attack. A parallel CFD study was conducted using commercial software, ICEM 15.0 and FLUENT 15.0. Simulating a similar nacelle geometry operating under inlet boundary conditions obtained through wind tunnel characterization allowed for direct comparisons with experiment. It was determined that the Realizable k-ϵ was best suited for drag prediction of this geometry. This model predicted the axial momentum loss and secondary flow in the wake, as well as the integrated surface forces, within experimental error up to 20o angle of attack. SST k-ω required additional surface grid resolution on the nacelle suction side, resulting in 15% more elements, due to separation point prediction sensitivity. It was further recommended to apply enhanced wall treatment to more accurately capture the viscous drag and separated flow structures. Overall, total drag was predicted within 5% at 0o angle of attack and 10% at 20o, each within experimental uncertainty. What is more, the form and induced drag predicted by CFD and measured by the wake traverse shared good agreement. Which indicated CFD captured the key flow features accurately despite simplification of the nacelle interior geometry.
Resumo:
The aim of this thesis was threefold, firstly, to compare current player tracking technology in a single game of soccer. Secondly, to investigate the running requirements of elite women’s soccer, in particular the use and application of athlete tracking devices. Finally, how can game style be quantified and defined. Study One compared four different match analysis systems commonly used in both research and applied settings: video-based time-motion analysis, a semi-automated multiple camera based system, and two commercially available Global Positioning System (GPS) based player tracking systems at 1 Hertz (Hz) and 5 Hz respectively. A comparison was made between each of the systems when recording the same game. Total distance covered during the match for the four systems ranged from 10 830 ± 770 m (semi-automated multiple camera based system) to 9 510 ± 740m (video-based time-motion analysis). At running speeds categorised as high-intensity running (>15 km⋅h-1), the semi-automated multiple camera based system reported the highest distance of 2 650 ± 530 m with video-based time-motion analysis reporting the least amount of distance covered with 1 610 ± 370 m. At speeds considered to be sprinting (>20 km⋅h-1), the video-based time-motion analysis reported the highest value (420 ± 170 m) and 1 Hz GPS units the lowest value (230 ± 160 m). These results demonstrate there are differences in the determination of the absolute distances, and that comparison of results between match analysis systems should be made with caution. Currently, there is no criterion measure for these match analysis methods and as such it was not possible to determine if one system was more accurate than another. Study Two provided an opportunity to apply player-tracking technology (GPS) to measure activity profiles and determine the physical demands of Australian international level women soccer players. In four international women’s soccer games, data was collected on a total of 15 Australian women soccer players using a 5 Hz GPS based athlete tracking device. Results indicated that Australian women soccer players covered 9 140 ± 1 030 m during 90 min of play. The total distance covered by Australian women was less than the 10 300 m reportedly covered by female soccer players in the Danish First Division. However, there was no apparent difference in the estimated "#$%&', as measured by multi-stage shuttle tests, between these studies. This study suggests that contextual information, including the “game style” of both the team and opposition may influence physical performance in games. Study Three examined the effect the level of the opposition had on the physical output of Australian women soccer players. In total, 58 game files from 5 Hz athlete-tracking devices from 13 international matches were collected. These files were analysed to examine relationships between physical demands, represented by total distance covered, high intensity running (HIR) and distances covered sprinting, and the level of the opposition, as represented by the Fédération Internationale de Football Association (FIFA) ranking at the time of the match. Higher-ranking opponents elicited less high-speed running and greater low-speed activity compared to playing teams of similar or lower ranking. The results are important to coaches and practitioners in the preparation of players for international competition, and showed that the differing physical demands required were dependent on the level of the opponents. The results also highlighted the need for continued research in the area of integrating contextual information in team sports and demonstrated that soccer can be described as having dynamic and interactive systems. The influence of playing strategy, tactics and subsequently the overall game style was highlighted as playing a significant part in the physical demands of the players. Study Four explored the concept of game style in field sports such as soccer. The aim of this study was to provide an applied framework with suggested metrics for use by coaches, media, practitioners and sports scientists. Based on the findings of Studies 1- 3 and a systematic review of the relevant literature, a theoretical framework was developed to better understand how a team’s game style could be quantified. Soccer games can be broken into key moments of play, and for each of these moments we categorised metrics that provide insight to success or otherwise, to help quantify and measure different methods of playing styles. This study highlights that to date, there had been no clear definition of game style in team sports and as such a novel definition of game style is proposed that can be used by coaches, sport scientists, performance analysts, media and general public. Studies 1-3 outline four common methods of measuring the physical demands in soccer: video based time motion analysis, GPS at 1 Hz and at 5 Hz and semiautomated multiple camera based systems. As there are no semi-automated multiple camera based systems available in Australia, primarily due to cost and logistical reasons, GPS is widely accepted for use in team sports in tracking player movements in training and competition environments. This research identified that, although there are some limitations, GPS player-tracking technology may be a valuable tool in assessing running demands in soccer players and subsequently contribute to our understanding of game style. The results of the research undertaken also reinforce the differences between methods used to analyse player movement patterns in field sports such as soccer and demonstrate that the results from different systems such as GPS based athlete tracking devices and semi-automated multiple camera based systems cannot be used interchangeably. Indeed, the magnitude of measurement differences between methods suggests that significant measurement error is evident. This was apparent even when the same technologies are used which measure at different sampling rates, such as GPS systems using either 1 Hz or 5 Hz frequencies of measurement. It was also recognised that other factors influence how team sport athletes behave within an interactive system. These factors included the strength of the opposition and their style of play. In turn, these can impact the physical demands of players that change from game to game, and even within games depending on these contextual features. Finally, the concept of what is game style and how it might be measured was examined. Game style was defined as "the characteristic playing pattern demonstrated by a team during games. It will be regularly repeated in specific situational contexts such that measurement of variables reflecting game style will be relatively stable. Variables of importance are player and ball movements, interaction of players, and will generally involve elements of speed, time and space (location)".
Resumo:
Purpose: An increase in the number of pedelecs on Swedish roads is according to studies soon reality. This creates a need to adapt the bmp-grid (bike-, moped- and pedestrian-grid) to pedelecs for them to experience good security, accessibility and comfort while using it. The guidelines Swedish municipalities follow are VGU(Design of Roads and Streets) and the GCM-manual(Bike-, moped-, and pedestrian-manual) which currently do not take society’s future increase of pedelecs into account. VGU and the GCM-manual are tools that are commonly used during planning and design of roads and streets. The aim of the thesis is to use current advice and recommendations on how to adapt the bmp-grid to the pedelec and with this complete current guidelines for bmp-infrastructure. Method: The document-analysis is made on current federal documents that have an impact on bmp-design. Scetch-suggestions were then developed from the author’s personal improvement suggestions and from advice and recommendations gathered during the document-analysis and the theoretical framework. Findings: It was discovered that if the bmp-grid’s design allow bikes traveling up to 30km/h and has a good standard for bicycles according to VGU, then the infrastructure generally fulfil the needs of the pedelec. Altough there are still areas in VGU that needs complements. This need to be done on the design-guidelines so they can aid the adaption of the infrastructure to the pedelec during the planning- and design process. Necessary steps according to the result is to give clearer notifications on bmp-design, issue guidelines for choosing DTS, motivate minimal widths on roads, categories bikers and pedestrians into separate groups, give out more detailed descriptions of when separation of bikers and pedestrians should be done and also to specify different types of bike-users. When taking needs and claim of the pedelec into consideration the result shows that: adaption of the whole bmp-grid to the pedelec is not possible, to simplify priorities the bmp-grid needs to be divided into different sections, space should be taken from the car-traffic, solutions with mixed-traffic and bike-fields for pedelecs can be used in low-speed areas, larger opportunities to connect towns to increase commuting with bicycles appeared with the pedelec. Implications: After examining current guidelines regarding the design of the bmp-grid and gathering opinions on this from interviews the conclusion is that several areas in VGU needs completion. The following are recommendations on how to take the pedelec into consideration during the design-process:• Connect towns and urban-areas with bmp-grids to make use of pedelecs capacity.• Where there is not enough space for both cars and separated pedelec- and bike lanes the speed for car-traffic can be lowered to 30km/h. This creates opportunities with mixed-traffic or bike-lanes.• The width of existing roads and streets are often greater than what’s described in VGU. They can be made smaller to free space on roads for bicycle-infrastructure.• To prioritize which parts of the bmp-grid that needs design to allow pedelecs the bmp-grid can be divided into main- and local grid. The main grid should be design with consideration to the needs and claim of the pedelecs. Limitations: The limitation of the study lies in that none of the interviews where done with employees in any of the bigger municipalities in Sweden. This gives the study a general application in small- to middle-sized cities but not in bigger cities.Keywords: elcykel, ebike, pedelec, utformning, cykel, infrastruktur, infrastructure, society, planering, utformning, säkerhet, fordonstyp
Resumo:
This paper presents an SIMD machine which has been tuned to execute low-level vision algorithms employing the relaxation labeling paradigm. Novel features of the design include: 1. (1) a communication scheme capable of window accessing under a single instruction. 2. (2) flexible I/O instructions to load overlapped data segments; and 3. (3) data-conditional instructions which can be nested to an arbitrary degree. A time analysis of the stereo correspondence problem, as implemented on a simulated version of the machine using the probabilistic relaxation technique, shows a speed up of almost N2 for an N × N array of PEs.
Resumo:
This paper presents the development and experimental validation of a novel angular velocity observer-based field-oriented control algorithm for a promising low-cost brushless doubly fed reluctance generator (BDFRG) in wind power applications. The BDFRG has been receiving increasing attention because of the use of partially rated power electronics, the high reliability of brushless design, and competitive performance to its popular slip-ring counterpart, the doubly fed induction generator. The controller viability has been demonstrated on a BDFRG laboratory test facility for emulation of variable speed and loading conditions of wind turbines or pump drives.
Resumo:
In Australia, young drivers aged 17 to 24 years, and particularly males, have the highest risk of being involved in a fatal crash. Investigation of young drivers’ beliefs allows for a greater understanding of their involvement in risky behaviours, such as speeding, as beliefs are associated with intentions, the antecedent to behaviour. The theory of planned behaviour (TPB) was used to conceptualise beliefs using a scenario based questionnaire distributed to licensed drivers (N = 398). The questionnaire measured individual’s beliefs and intentions to speed in a particular situation. Consistent with a TPB-based approach, the beliefs of those with low intentions to speed (‘low intenders’) were compared with the beliefs of those with high intentions (‘high intenders’) with such comparisons conducted separately for males and females. Overall, significant differences in the beliefs held by low and high intenders and for both females and males were found. Specifically, for females, it was found that high intenders were significantly more likely to perceive advantages of speeding, less likely to perceive disadvantages, and more likely to be encouraged to speed on familiar and inappropriately signed roads than female low intenders. Females, however, did not differ in their perceptions of support from friends, with all females reporting some level of disapproval from most friends and all females (i.e., low and high intenders) reporting approval to speed from their male friends. The results for males revealed that high intenders were significantly more likely to speed on familiar and inappropriately signed roads as well as having greater perceptions of support from all friends, except from those friends with whom they worked. Low and high intending males did not differ in their perceptions of the advantages and disadvantages of speeding, with the exception of feelings of excitement whereby high intenders reported speeding to be more exciting than low intenders. The findings are discussed in terms of how they may directly inform the content of mass media and public education campaigns aimed at encouraging young drivers to slow down.
Resumo:
Increased or fluctuating resources may facilitate opportunities for invasive exotic plants to dominate. This hypothesis does not, however, explain how invasive species succeed in regions characterized by low resource conditions or how these species persist in the lulls between high resource periods. We compare the growth of three co-occurring C4 perennial bunchgrasses under low resource conditions: an exotic grass, Eragrostis curvula (African lovegrass) and two native grasses, Themeda triandra and Eragrostis sororia. We grew each species over 12 weeks under low nutrients and three low water regimes differentiated by timing: continuous, pulsed, and mixed treatments (switched from continuous to pulsed and back to continuous). Over time, we measured germination rates, time to germination (first and second generations), height, root biomass, vegetative biomass, and reproductive biomass. Contrary to our expectations that the pulsed watering regime would favor the invader, water-supply treatments had little significant effect on plant growth. We did find inherent advantages in a suite of early colonization traits that likely favor African lovegrass over the natives including faster germination speed, earlier flowering times, faster growth rates and from 2 weeks onward it was taller. African lovegrass also showed similar growth allocation strategies to the native grasses in terms of biomass levels belowground, but produced more vegetative biomass than kangaroo grass. Overall our results suggest that even under low resource conditions invasive plant species like African lovegrass can grow similarly to native grasses, and for some key colonization traits, like germination rate, perform better than natives.
Resumo:
Power system stabilizer (PSS) is one of the most important controllers in modern power systems for damping low frequency oscillations. Many efforts have been dedicated to design the tuning methodologies and allocation techniques to obtain optimal damping behaviors of the system. Traditionally, it is tuned mostly for local damping performance, however, in order to obtain a globally optimal performance, the tuning of PSS needs to be done considering more variables. Furthermore, with the enhancement of system interconnection and the increase of system complexity, new tools are required to achieve global tuning and coordination of PSS to achieve optimal solution in a global meaning. Differential evolution (DE) is a recognized as a simple and powerful global optimum technique, which can gain fast convergence speed as well as high computational efficiency. However, as many other evolutionary algorithms (EA), the premature of population restricts optimization capacity of DE. In this paper, a modified DE is proposed and applied for optimal PSS tuning of 39-Bus New-England system. New operators are introduced to reduce the probability of getting premature. To investigate the impact of system conditions on PSS tuning, multiple operating points will be studied. Simulation result is compared with standard DE and particle swarm optimization (PSO).
Resumo:
Rolling Element Bearings (REBs) are vital components in rotating machineries for providing rotating motion. In slow speed rotating machines, bearings are normally subjected to heavy static loads and a catastrophic failure can cause enormous disruption to production and human safety. Due to its low operating speed the impact energy generated by the rotating elements on the defective components is not sufficient to produce a detectable vibration response. This is further aggravated by the inability of general measuring instruments to detect and process the weak signals at the initiation of the defect accurately. Furthermore, the weak signals are often corrupted by background noise. This is a serious problem faced by maintenance engineers today and the inability to detect an incipient failure of the machine can significantly increases the risk of functional failure and costly downtime. This paper presents the application of noise removal techniques for enhancing the detection capability for slow speed REB condition monitoring. Blind deconvolution (BD) and adaptive line enhancer (ALE) are compared to evaluate their performance in enhancing the source signal with consequential removal of background noise. In the experimental study, incipient defects were seeded on a number of roller bearings and the signals were acquired using acoustic emission (AE) sensor. Kurtosis and modified peak ratio (mPR) were used to determine the detectability of signal corrupted by noise.