919 resultados para Look homeward, angel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Social networks are one of the “hot” themes in people’s life and contemporary social research. Considering our “embeddedness” in a thick web of social relations is a study perspective that could unveil a number of explanations of how people may manage their personal and social resources. Looking at people’s behaviors of building and managing their social networks, seems to be an effective way to find some possible rationalization about how to help people getting the best from their resources . The main aim of this dissertation is to give a closer look at the role of networking behaviors. Antecedents, motivations, different steps and measures about networking behaviors and outcomes are analyzed and discussed. Results seem to confirm, in a different setting and time perspective, that networking behaviors include different types and goals that change over time. Effects of networking behaviors seem to find empirical confirmation through social network analysis methods. Both personality and situational self-efficacy seem to predict networking behaviors. Different types of motivational drivers seem to be related to diverse networking behaviors.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes the Mobile Ad Hoc Networking Interoperability and Cooperation (MANIAC) Challenge, a competition in MANETs. The primary objective of the competition was to assess the trade-offs between network-wide connectivity and resource utilization in a MANET comprising autonomous self-interested nodes. The competition attracted participants from academic institutions in the United States, Europe, and Africa. The data collected provide a better understanding of link stability, route effectiveness, cooperation, and competition in an autonomously deployed MANET.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Creatinine levels in blood serum are typically used to assess renal function. Clinical determination of creatinine is often based on the Jaffe reaction, in which creatinine in the serum reacts with sodium picrate, resulting in a spectrophotometrically quantifiable product. Previous work from our lab has introduced an electrophoretically mediated initiation of this reaction, in which nanoliter plugs of individual reagent solutions can be added to the capillary and then mixed and reacted. Following electrophoretic separation of the product from excess reactant(s), the product can be directly determined on column. This work aims to gain a detailed understanding of the in-capillary reagent mixing dynamics, in-line reaction yield, and product degradation during electrophoresis, with an overall goal of improving assay sensitivity. One set of experiments focuses on maximizing product formation through manipulation of various conditions such as pH, voltage applied, and timing of the applied voltage, in addition to manipulations in the identity, concentration, and pH of the background electrolyte. Through this work, it was determined that dramatic changes in local voltage fields within the various reagent zones lead to ineffective reagent overlapping. Use of the software simulation program Simul 5 enabled visualization of the reaction dynamics within the capillary, specifically the wide variance between the electric field intensities within the creatinine and picrate zones. Because of this simulation work, the experimental method was modified to increase the ionic strength of the creatinine reagent zone to lower the local voltage field, thus producing more predictable and effective overlap conditions for the reagents and allowing the formation of more Jaffe product. As second set of experiments focuses on controlling the post-reaction product degradation. In that vein, we have systematically explored the importance of the identity, concentration, and pH of the background electrolyte on the post-reaction degradation rate of the product. Although prior work with borate background electrolytes indicated that product degradation was probably a function of the ionic strength of the background electrolyte, this work with a glycine background electrolyte demonstrates that degradation is in fact not a function of ionic strength of the background electrolyte. As the concentration and pH of the glycine background increased, the rate of degradation of product did not change dramatically, whereas in borate-buffered systems, the rate of Jaffe product degradation increased linearly with background electrolyte concentration above 100.0 mM borate. Similarly, increasing pH of the glycine background electrolyte did not result in a corresponding increase in product degradation, as it had with the borate background electrolyte. Other general trends that were observed include: increasing background electrolyte concentration increases peak efficiency and higher pH favors product formation; thus, it appears that use of a background electrolyte other than borate, such as glycine, the rate of degradation of the Jaffe product can be slowed, increasing the sensitivity of this in-line assay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ligands of the benzodiazepine binding site of the GABA(A) receptor come in three flavors: positive allosteric modulators, negative allosteric modulators and antagonists all of which can bind with high affinity. The GABA(A) receptor is a pentameric protein which forms a chloride selective ion channel and ligands of the benzodiazepine binding site stabilize three different conformations of this protein. Classical benzodiazepines exert a positive allosteric effect by increasing the apparent affinity of channel opening by the agonist γ-aminobutyric acid (GABA). We concentrate here on the major adult isoform, the α(1)β(2)γ(2) GABA(A) receptor. The classical binding pocket for benzodiazepines is located in a subunit cleft between α(1) and γ(2) subunits in a position homologous to the agonist binding site for GABA that is located between β(2) and α(1) subunits. We review here approaches to this picture. In particular, point mutations were performed in combination with subsequent analysis of the expressed mutant proteins using either electrophysiological techniques or radioactive ligand binding assays. The predictive power of these methods is assessed by comparing the results with the predictions that can be made on the basis of the recently published crystal structure of the acetylcholine binding protein that shows homology to the N-terminal, extracellular domain of the GABA(A) receptor. In addition, we review an approach to the question of how the benzodiazepine ligands are positioned in their binding pocket. We also discuss a newly postulated modulatory site for benzodiazepines at the α(1)/β(2) subunit interface, homologous to the classical benzodiazepine binding pocket.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Predicting the behavior of phobic patients in a confrontational situation is challenging. While avoidance as a major clinical component of phobias suggests that patients orient away from threat, findings based on cognitive paradigms indicate an attentional bias towards threat. Here we present eye movement data from 21 spider phobics and 21 control subjects, based on 3 basic oculomotor tasks and a visual exploration task that included close-up views of spiders. Relative to the control group, patients showed accelerated reflexive saccades in one of the basic oculomotor tasks, while the fear-relevant exploration task evoked a general slowing in their scanning behavior and pronounced oculomotor avoidance. However, this avoidance strongly varied within the patient group and was not associated with the scores from spider avoidance-sensitive questionnaire scales. We suggest that variation of oculomotor avoidance between phobics reflects different strategies of how they cope with threat in confrontational situations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This conference paper serves to examine the evolutionary linkages of a brachiating ancestor in humans, the biomechanical and neurophysiology of modern day brachiators, and the human rediscovery of this form of locomotion. Brachiation is arguably one of the most metabolically effective modes of travel by any organism and can be observed most meritoriously in Gibbons. The purpose of the research conducted for this paper was to encourage further exploration of the neurophysiological similarities and differences between humans and non-human primates. The hope is that in spurring more interest and research in this area, further possibilities for rehabilitating brain injury will be developed, or even theories on how to better train our athletes, using the biomechanics and neurophysiology of brachiation as a guide.