835 resultados para Living neurons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose-sensing neurons in the brainstem participate in the regulation of energy homeostasis but have been poorly characterized because of the lack of specific markers to identify them. Here we show that GLUT2-expressing neurons of the nucleus of the tractus solitarius form a distinct population of hypoglycemia-activated neurons. Their response to low glucose is mediated by reduced intracellular glucose metabolism, increased AMP-activated protein kinase activity, and closure of leak K(+) channels. These are GABAergic neurons that send projections to the vagal motor nucleus. Light-induced stimulation of channelrhodospin-expressing GLUT2 neurons in vivo led to increased parasympathetic nerve firing and glucagon secretion. Thus GLUT2 neurons of the nucleus tractus solitarius link hypoglycemia detection to counterregulatory response. These results may help identify the cause of hypoglycemia-associated autonomic failure, a major threat in the insulin treatment of diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quand on parle de l'acide lactique (aussi connu sous le nom de lactate) une des premières choses qui vient à l'esprit, c'est son implication en cas d'intense activité musculaire. Sa production pendant une activité physique prolongée est associée avec la sensation de fatigue. Il n'est donc pas étonnant que cette molécule ait été longtemps considérée comme un résidu du métabolisme, possiblement toxique et donc à éliminer. En fait, il a été découvert que le lactate joue un rôle prépondérant dans le métabolisme grâce à son fort potentiel énergétique. Le cerveau, en particulier les neurones qui le composent, est un organe très gourmand en énergie. Récemment, il a été démontré que les astrocytes, cellules du cerveau faisant partie de la famille des cellules gliales, utilisent le glucose pour produire du lactate comme source d'énergie et le distribue aux neurones de manière adaptée à leur activité. Cette découverte a renouvelé l'intérêt scientifique pour le lactate. Aujourd'hui, plusieurs études ont démontré l'implication du lactate dans d'autres fonctions de la physiologie cérébrale. Dans le cadre de notre étude, nous nous sommes intéressés au rapport entre neurones et astrocytes avec une attention particulière pour le rôle du lactate. Nous avons découvert que le lactate possède la capacité de modifier la communication entre les neurones. Nous avons aussi décrypté le mécanisme grâce auquel le lactate agit, qui est basé sur un récepteur présent à la surface des neurones. Cette étude montre une fonction jusque-là insoupçonnée du lactate qui a un fort impact sur la compréhension de la relation entre neurones et astrocytes. - Relatively to its volume, the brain uses a large amount of glucose as energy source. Furthermore, a tight link exists between the level of synaptic activity and the consumption of energy equivalents. Astrocytes have been shown to play a central role in the regulation of this so-called neurometabolic coupling. They are thought to deliver the metabolic substrate lactate to neurons in register to glutamatergic activity. The astrocytic uptake of glutamate, released in the synaptic cleft, is the trigger signal that activates an intracellular cascade of events that leads to the production and release of lactate from astrocytes. The main goal of this thesis work was to obtain detailed information on the metabolic and functional interplay between neurons and astrocytes, in particular on the influence of lactate besides its metabolic effects. To gain access to both spatial and temporal aspects of these dynamic interactions, we used optical microscopy associated with specific fluorescent indicators, as well as electrophysiology. In the first part of this thesis, we show that lactate decreases spontaneous neuronal, activity in a concentration-dependent manner and independently of its metabolism. We further identified a receptor-mediated pathway underlying this modulatory action of lactate. This finding constituted a novel mechanism for the modulation of neuronal transmission by lactate. In the second part, we have undergone a characterization of a new pharmacological tool, a high affinity glutamate transporter inhibitor. The finality of this study was to investigate the detailed pharmacological properties of the compound to optimize its use as a suppressor of glutamate signal from neuron to astrocytes. In conclusion, both studies have implications not only for the understanding of the metabolic cooperation between neurons and astrocytes, but also in the context of the glial modulation of neuronal activity. - Par rapport à son volume, le cerveau utilise une quantité massive de glucose comme source d'énergie. De plus, la consommation d'équivalents énergétiques est étroitement liée au niveau d'activité synaptique. Il a été montré que dans ce couplage neurométabolique, un rôle central est joué par les astrocytes. Ces cellules fournissent le lactate, un substrat métabolique, aux neurones de manière adaptée à leur activité glutamatergique. Plus précisément, le glutamate libéré dans la fente synaptique par les neurones, est récupéré par les astrocytes et déclenche ainsi une cascade d'événements intracellulaires qui conduit à la production et libération de lactate. Les travaux de cette thèse ont visé à étudier la relation métabolique et fonctionnelle entre neurones et astrocytes, avec une attention particulière pour des rôles que pourrait avoir le lactate au-delà de sa fonction métabolique. Pour étudier les aspects spatio-temporels de ces interactions dynamiques, nous avons utilisé à la fois la microscopie optique associée à des indicateurs fluorescents spécifiques, ainsi que l'électrophysiologie. Dans la première partie de cette thèse, nous montrons que le lactate diminue l'activité neuronale spontanée de façon concentration-dépendante et indépendamment de son métabolisme. Nous avons identifié l'implication d'un récepteur neuronal au lactate qui sous-tend ce mécanisme de régulation. La découverte de cette signalisation via le lactate constitue un mode d'interaction supplémentaire et nouveau entre neurones et astrocytes. Dans la deuxième partie, nous avons caractérisé un outil pharmacologique, un inhibiteur des transporteurs du glutamate à haute affinité. Le but de cette étude était d'obtenir un agent pharmacologique capable d'interrompre spécifiquement le signal médié par le glutamate entre neurones et astrocytes pouvant permettre de mieux comprendre leur relation. En conclusion, ces études ont une implication non seulement pour la compréhension de la coopération entre neurones et astrocytes mais aussi dans le contexte de la modulation de l'activité neuronale par les cellules gliales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Community studies of non-hospitalized children are essential to obtain a more thorough understanding of acute respiratory infections (ARI) and provide important information for public health authorities. This study identified a total ARI incidence rate (IR) of 4.5 per 100 child-weeks at risk and 0.78 for lower respiratory tract infections (LRI). Disease duration averaged less than one week and produced a total time ill with ARI of 5.8% and for LRI 1.2%. No clear seasonal variation was observed, the sex-specific IR showed a higher proportion of boys becoming ill with ARI and LRI and the peak age-specific IR occurred in infants of 6-11 months. Correlation with risk factors of the child (breastfeeding, vaccination, diarrheal disease, undernourishment) and the environment (crowding, living conditions, maternal age and education) showed marginal increases in the rate ratios, making it difficult to propose clear-cuts targets for action to lower the ARI and LRI morbidity. The importance of an integral maternal-child health care program and public education in the early recognition of LRI is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Why and how do failed states affect neighbouring countries? The attention of the international community towards state failure has grown significantly in recent years, improving the understanding of this phenomenon; nevertheless, the knowledge about the influence of state failure on neighbouring countries remain scarce. This research aims at contributing to filling up the existing gap by analyzing two different cases of state failure –Liberia and Afghanistan– and its consequences on four of their neighbours –Sierra Leone, Guinea, Pakistan and Tajikistan. More concretely, this research investigates the importance of insurgency movements in the relationship between these countries. The research argues that failed states generate conflict-enhancing mechanisms –which might lead to conflict outbreak– in their neighbours through the creation of informal networks. The empiric evidence shows how insurgency-based informal networks have a decisive role in the outbreak of conflict.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary sensory neurons display various neuronal phenotypes which may be influenced by factors present in central or peripheral targets. In the case of DRG cells expressing substance P (SP), the influence of peripheral or central targets was tested on the neuronal expression of this neuropeptide. DRG cells were cultured from chick embryo at E6 or E10 (before or after establishment of functional connections with targets). Preprotachykinin mRNA was visualized in DRG cell cultures by either Northern blot or in situ hybridization using an antisense labeled riboprobe, while the neuropeptide SP was detected by immunostaining with a monoclonal antibody. In DRG cell cultures from E10, only 60% of neurons expressed SP. In contrast, DRG cell cultures performed at E6 showed a significant hybridization signal and SP-like immunoreactivity in virtually all the neurons (98%). The addition of extracts from muscle, skin, brain or spinal cord to DRG cells cultured at E6 reduced by 20% the percentage of neurons which express preprotachykinin mRNA and SP-like immunoreactivity. Our results indicate that factors issued from targets inhibit SP-expression by a subset of primary sensory neurons and act on the transcriptional control of preprotachykinin gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An in vitro model of adult dorsal root ganglion neurons infection by rabies virus is described. Viral marked neurotropism is observed, and the percentage and the degree of infection of the neurons is higher than in non neuronal cells, even if neurons are the minority of the cells in the culture. The neuritic tree is also heavily infected by the virus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New anti-cancer agents are being developed that specifically recognise tumour cells. Recognition is dependent upon the enhanced expression of antigenic determinants on the surface of tumour cells. The tumour exposure and the extracellular accessibility of the mucin MUC-1 make this marker a suitable target for tumour diagnosis and therapy. We isolated and characterised six human scFv antibody fragments that bound to the MUC-1 core protein, by selecting a large naive human phage display library directly on a MUC-1-expressing breast carcinoma cell line. Their binding characteristics have been studied by ELISA, FACS and indirect immunofluorescence. The human scFv antibody fragments were specific for the tandem repeat region of MUC-1 and their binding is inhibited by soluble antigen. Four human scFv antibody fragments (M2, M3, M8, M12) recognised the hydrophilic PDTRP region of the MUC-1 core protein, which is thought to be an immunodominant region. The human scFv antibody fragments were stable in human serum at 37 degrees C and retained their binding specificity. For imaging or targeting to tumours over-expressing MUC-1, it might be feasible to use these human scFv, or multivalent derivatives, as vehicles to deliver anti-cancer agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presenilin 1 (PS1) mutations are responsible for a majority of early onset familial Alzheimer's disease (FAD) cases, in part by increasing the production of Abeta peptides. However, emerging evidence suggests other possible effects of PS1 on synaptic dysfunction where PS1 might contribute to the pathology independent of Abeta. We chose to study the L286V mutation, an aggressive FAD mutation which has never been analyzed at the electrophysiological and morphological levels. In addition, we analyzed for the first time the long term effects of wild-type human PS1 overexpression. We investigated the consequences of the overexpression of either wild-type human PS1 (hPS1) or the L286V mutated PS1 variant (mutPS1) on synaptic functions by analyzing synaptic plasticity and associated spine density changes from 3 to 15 months of age. We found that mutPS1 induces a transient increase observed only in 4- to 5-month-old mutPS1 animals in NMDA receptor (NMDA-R)-mediated responses and LTP compared with hPS1 mice and nontransgenic littermates. The increase in synaptic functions is concomitant with an increase in spine density. With increasing age, however, we found that the overexpression of human wild-type PS1 progressively decreased NMDA-R-mediated synaptic transmission and LTP, without neurodegeneration. These results identify for the first time a transient increase in synaptic function associated with L286V mutated PS1 variant in an age-dependent manner. In addition, they support the view that the PS1 overexpression promotes synaptic dysfunction in an Abeta-independent manner and underline the crucial role of PS1 during both normal and pathological aging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vivo imaging of green fluorescent protein (GFP)-labeled neurons in the intact brain is being used increasingly to study neuronal plasticity. However, interpreting the observed changes as modifications in neuronal connectivity needs information about synapses. We show here that axons and dendrites of GFP-labeled neurons imaged previously in the live mouse or in slice preparations using 2-photon laser microscopy can be analyzed using light and electron microscopy, allowing morphological reconstruction of the synapses both on the imaged neurons, as well as those in the surrounding neuropil. We describe how, over a 2-day period, the imaged tissue is fixed, sliced and immuno-labeled to localize the neurons of interest. Once embedded in epoxy resin, the entire neuron can then be drawn in three dimensions (3D) for detailed morphological analysis using light microscopy. Specific dendrites and axons can be further serially thin sectioned, imaged in the electron microscope (EM) and then the ultrastructure analyzed on the serial images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In addition to functionally affected neuronal signaling pathways, altered axonal, dendritic, and synaptic morphology may contribute to hippocampal hyperexcitability in chronic mesial temporal lobe epilepsies (MTLE). The sclerotic hippocampus in Ammon's horn sclerosis (AHS)-associated MTLE, which shows segmental neuronal cell loss, axonal reorganization, and astrogliosis, would appear particularly susceptible to such changes. To characterize the cellular hippocampal pathology in MTLE, we have analyzed hilar neurons in surgical hippocampus specimens from patients with MTLE. Anatomically well-preserved hippocampal specimens from patients with AHS (n = 44) and from patients with focal temporal lesions (non-AHS; n = 20) were studied using confocal laser scanning microscopy (CFLSM) and electron microscopy (EM). Hippocampal samples from three tumor patients without chronic epilepsies and autopsy samples were used as controls. Using intracellular Lucifer Yellow injection and CFLSM, spiny pyramidal, multipolar, and mossy cells as well as non-spiny multipolar neurons have been identified as major hilar cell types in controls and lesion-associated MTLE specimens. In contrast, none of the hilar neurons from AHS specimens displayed a morphology reminiscent of mossy cells. In AHS, a major portion of the pyramidal and multipolar neurons showed extensive dendritic ramification and periodic nodular swellings of dendritic shafts. EM analysis confirmed the altered cellular morphology, with an accumulation of cytoskeletal filaments and increased numbers of mitochondria as the most prominent findings. To characterize cytoskeletal alterations in hilar neurons further, immunohistochemical reactions for neurofilament proteins (NFP), microtubule-associated proteins, and tau were performed. This analysis specifically identified large and atypical hilar neurons with an accumulation of low weight NFP. Our data demonstrate striking structural alterations in hilar neurons of patients with AHS compared with controls and non-sclerotic MTLE specimens. Such changes may develop during cellular reorganization in the epileptogenic hippocampus and are likely to contribute to the pathogenesis or maintenance of temporal lobe epilepsy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a direct binding assay based on photoaffinity labeling, we have studied the interaction of an antigenic peptide with MHC class I molecules and the TCR on living cells. Two photoreactive derivatives of the H-2Kd (Kd) restricted Plasmodium berghei circumsporozoite (PbCS) peptide 253-260 (YIPSAEKI) were used. The first derivative contained an N-terminal photoreactive iodo, 4-azido salicyloyl (IASA) group and biotin on the TCR contact residue Lys259 [IASA-YIPSAEK(biotin)I]. As previously described, this derivative selectively bound to and labeled the Kd molecule. The second photoreactive compound, the isomeric biotin-YIPSAEK(IASA)I, also efficiently bound to the Kd molecule, but failed to label this protein. A CTL clone derived from a mouse immunized with this derivative recognized this conjugate but not the parental P. berghei circumsporozoite peptide or the [IASA-YIPSAEK-(biotin)I] derivative in an Kd-restricted manner. Incubation of the cloned CTL cells with biotin-YIPSAEK(IASA)I, but not its isomer, followed by UV irradiation resulted in photoaffinity labeling of the TCR-alpha chain that was dependent on the conjugate binding to the Kd molecule. The TCR labeling was partially inhibited by anti-LFA 1 and anti-ICAM1 mAb, but was increased by addition of beta 2m or soluble KdQ10. The exquisite labeling selectivity of the two photoprobes opens a new, direct approach to the molecular analysis of antigen presentation and recognition by living CTL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serum-free aggregating cell cultures of fetal rat telencephalon treated with the potent tumor promoter phorbol 12-myristate 13-acetate (PMA) showed a dose-dependent, persistent stimulation of the enzymes choline acetyltransferase (ChAT), glutamic acid decarboxylase and glutamine synthetase. After elimination of the proliferating cells by treatment of the cultures with Ara-C (0.4 microM) only the cholinergic marker enzyme, ChAT, could be stimulated by tumor promoters. The non-promoting phorbol ester, 4 alpha-phorbol 12,13-didecanoate proved to be inactive in these cultures, whereas the potent non-phorbol tumor promoter, mezerein, produced an even greater stimulatory effect than PMA. Since PMA and mezerein are potent and specific activators of protein kinase C, the present results suggest a role for this second messenger in the development of cholinergic telencephalon neurons. Stimulation of ChAT required prolonged exposure (48 h) of the cultures to PMA and the responsiveness of the cholinergic neurons to the tumor promoters decreased with progressive cellular maturation. The cholinergic telencephalon neurons showed the same pattern of responsiveness for tumor promoters as for nerve growth factor (NGF). However, the combined treatment with NGF and either PMA or mezerein produced an additive stimulatory effect, suggesting somewhat different mechanisms of action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During brain development, spontaneous neuronal activity has been shown to play a crucial role in the maturation of neuronal circuitries. Activity-related signals may cause selective neuronal cell death and/or rearrangement of neuronal connectivity. To study the effects of sustained inhibitory activity on developing inhibitory (GABAergic) neurons, three-dimensional primary cell cultures of fetal rat telencephalon were used. In relatively immature cultures, muscimol (10 microns), a GABAA receptor agonist, induced a transient increase in apoptotic cell death, as evidenced by a cycloheximide-sensitive increase of free nucleosomes and an increased frequency of DNA double strand breaks (TUNEL labeling). Furthermore, muscimol caused an irreversible reduction of glutamic acid decarboxylase activity, indicating a loss of GABAergic neurons. The muscimol-induced death of GABAergic neurons was attenuated by the GABAA receptor blockers bicuculline (100 microns) and picrotoxin (100 microns), by depolarizing potassium concentrations (30 mM KCl) and by the L-type calcium channel activator BAY K8644 (2 microns). As compared to the cholinergic marker (choline acetyltransferase activity), glutamic acid decarboxylase activity was significantly more affected by various agents known to inhibit neuronal activity, including tetrodotoxin (1 micron), flunarizine (5 microns), MK 801 (50 microns) and propofol (40 microns). The present results suggest that the survival of a subpopulation of immature GABAergic neurons is dependent on sustained neuronal activity and that these neurons may undergo apoptotic cell death in response to GABAA autoreceptor activation.