963 resultados para Liver and ethanol
Resumo:
Although per capita alcohol consumption, and thus the prevalence of alcoholic liver disease, decreases generally with age in Europe and in the United States, recently an increase in alcohol consumption has been reported in individuals over 65 years. Reasons explaining this observation may include an increase in life expectancy or a loss of life partners and, thus, loneliness and depression. Although ethanol metabolism and ethanol distribution change with age, and an elderly person's liver is more susceptible to the toxic effect of ethanol, the spectrum of alcoholic liver diseases and their symptoms and signs is similar to that seen in patients of all ages. However, prognosis of alcoholic liver disease in the elderly is poor. In addition, chronic alcohol consumption may enhance drug associated liver disease and may also act as a cofactor in other liver diseases, such as viral hepatitis and nonalcoholic fatty liver disease.
Resumo:
Interleukin-1 beta is a potent mediator of the acute-phase response. However, the effects of interleukin-1 beta administration on the topic in vivo production of acute-phase proteins and albumin are so far not well understood. Overnight fasted rats were subcutaneously injected with 0.2 mL 0.9% NaCl (control group) or 6.25 micrograms recombinant human interleukin-1 beta, and rectal temperature was measured at intervals up to 48 h. Livers were perfused-fixed in vivo prior to injection (base-line), and at 9, 24, and 48 h following the interleukin-1 beta injection. Fibrinogen, orosomucoid (alpha 1-acid glycoprotein) and albumin were immunostained using a streptavidin-biotin-immunoperoxidase technique. Rectal temperature peaked 5 h after the single interleukin-1 beta injection, and fell gradually to base-line values by 24 h. Prior to injection only a few hepatocytes, randomly scattered throughout the liver lobule, stained positive for fibrinogen and orosomucoid. In contrast, all hepatocytes stained uniformly positive for fibrinogen and orosomucoid 9 h after interleukin-1 beta injection, whereas at 24 h a predominant centrilobular staining pattern occurred. Due to fasting, albumin positive hepatocytes were already reduced at base-line in both groups. Interleukin-1 beta induced a further significant loss of albumin positive cells in the periportal zone (35 +/- 21%) at 9 h when compared with controls (58 +/- 11%, p = 0.037). In conclusion, subcutaneous interleukin-1 beta (probably by stimulation of interleukin-6) strongly induces fibrinogen and orosomucoid expression in rat liver, and suppresses immunohistochemically stainable albumin in a heterogenous way, mainly in the periportal zone.
Resumo:
Standard toxicity tests with high levels of D-tagatose showed a reversible enlargement of the liver in Sprague-Dawley rats without increase of liver enzymes. The present study tests the hypotheses that partial substitution of dietary sucrose by D-tagatose for 28 days increases the volume of human liver and the concentration of liver glycogen. Twelve healthy, male volunteers were studied in a double-blind crossover study with ingestion of D-tagatose (3x15 g daily) and placebo (sucrose, 3x15 g daily) for periods of 28 days each. Liver volume and glycogen concentration have been determined by magnetic resonance (MR) imaging and spectroscopy, which were accompanied by routine medical examinations. MR examinations before and after the treatments revealed no effects (P>0.05) of treatment, period, or subject for changes in liver volume or glycogen concentration. A steady increase of liver volumes, independent of the D-tagatose or placebo intake, has been observed over the study in parallel with a slight increase in body weight. The treatment with D-tagatose was not associated with clinically relevant changes of the examined clinico-chemical and hematological parameters, including liver enzymes and uric acid.
Resumo:
The effects of three dietary selenium (Se) levels (0.15, 0.35 and 0.5 mg/kg dry matter (dm) and of two Se-compounds (sodium selenite and Se-yeast) on the Se-status, liver function and claw health were studied using 36 fattening bulls in a two-factorial feeding trial that lasted 16 weeks. The claw health was assessed macroscopically and microscopically. Compared to the two control diets containing 0.15 mg Se/kg dm, the intake of the diets containing 0.35 and 0.50 mg Se/kg dm significantly (P < 0.05) increased the Se-concentration in serum, hair, liver and skeletal muscle. Compared to sodium selenite the intake of Se-yeast resulted in significantly (P < 0.05) higher Se-concentration in serum, liver and hair. Concerning the claw horn quality, there was no significant difference between the different groups; the animals receiving organic Se tended to have a better histological score (P = 0.06) at the coronary band than the groups fed with sodium selenite. The serum vitamin E level decreased significantly (P < 0.05) with increasing Se-intake, which had no influence (P > 0.1) on growth and liver function parameters. With the exception of the decrease of the serum vitamin E level indicating an oxidative stress caused by a high Se-intake, no negative effects of dietary selenium exceeding recommended levels for 4 months were observed.
Resumo:
Analyses of rat T1 kininogen gene/chloramphenicol acetyltransferase (T1K/CAT) constructs revealed two regions important for tissue-specific and induced regulation of T1 kininogen.^ Although the T1 kininogen gene is inducible by inflammatory cytokines, a highly homologous K kininogen gene is minimally responsive. Moreover, the basal expression of a KK/CAT construct was 5- to 7-fold higher than that of the analogous T1K/CAT construct. To examine the molecular basis of this differential regulation, a series of promoter swapping experiments was carried out. Our transfection results showed that at least two regions in the K kininogen gene are important for its high basal expression: a distal 19-bp region (C box) constituted a binding site for CCAAT/enhancer binding protein (C/EBP) family proteins and a proximal 66-bp region contained two adjacent binding sites for hepatocyte nuclear factor-3 (HNF-3). The distal HNF-3 binding site from the K kininogen promoter demonstrated a stronger affinity than that from the T1 kininogen promoter. Since C/EBP and HNF-3 are highly enriched in the liver and known to enhance transcription of liver-specific genes, differential binding affinities of these factors accounted for the higher basal expression of the K kininogen gene.^ In contrast to the K kininogen C box, the T1 kininogen C box does not bind C/EBP presumably due to their two-nucleotide divergence. This sequence divergence, however, converts it to a consensus binding sequence for two IL-6-inducible transcription factors--IL-6 response element binding protein and acute-phase response factor. To functionally determine whether C box sequences are important for their differential acute-phase response, T1 and K kininogen C boxes were swapped and analyzed after transfection into Hep3B cells. Our results showed that the T1 kininogen C box is indeed one of the IL-6 response elements in T1 kininogen promoter. Furthermore, its function can be modulated by a 5$\sp\prime$-adjacent C/EBP-binding site (B box) whose mutation significantly reduced the overall induced activity. Moreover, this B box is the target site for binding and transactivation of another IL-6 inducible transcription factor C/EBP$\delta.$ Evolutionary divergence of a few critical nucleotides can either lead to subtle changes in the binding affinities of a given transcription factor or convert a binding sequence for a constitutive factor to a site recognized by an inducible factor. (Abstract shortened by UMI.) ^
Resumo:
For patients with extensive bilobar colorectal liver metastases (CRLM), initial surgery may not be feasible and a multimodal approach including microwave ablation (MWA) provides the only chance for prolonged survival. Intraoperative navigation systems may improve the accuracy of ablation and surgical resection of so-called "vanishing lesions", ultimately improving patient outcome. Clinical application of intraoperative navigated liver surgery is illustrated in a patient undergoing combined resection/MWA for multiple, synchronous, bilobar CRLM. Regular follow-up with computed tomography (CT) allowed for temporal development of the ablation zones. Of the ten lesions detected in a preoperative CT scan, the largest lesion was resected and the others were ablated using an intraoperative navigation system. Twelve months post-surgery a new lesion (Seg IVa) was detected and treated by trans-arterial embolization. Nineteen months post-surgery new liver and lung metastases were detected and a palliative chemotherapy started. The patient passed away four years after initial diagnosis. For patients with extensive CRLM not treatable by standard surgery, navigated MWA/resection may provide excellent tumor control, improving longer-term survival. Intraoperative navigation systems provide precise, real-time information to the surgeon, aiding the decision-making process and substantially improving the accuracy of both ablation and resection. Regular follow-ups including 3D modeling allow for early discrimination between ablation zones and recurrent tumor lesions.
Resumo:
BACKGROUND: Antiviral therapy for the hepatitis C virus (HCV) reduces all-cause and liver-related morbidity and mortality. Few studies are available from populations with multiple medical and psychiatric comorbidities where the impact of successful antiviral therapy might be limited. AIM: The purpose of this study was to determine the effect of sustained virologic response (SVR) on all-cause and liver-related mortality in a cohort of HCV patients treated in an integrated hepatitis/mental health clinic. METHODS: This was a retrospective review of all patients who initiated antiviral treatment for chronic HCV between January 1, 1997 and December 31, 2009. Cox regression analysis was used to determine factors involved in all-cause mortality, liver-related events and hepatocellular carcinoma. RESULTS: A total of 536 patients were included in the analysis. Median follow-up was 7.5 years. Liver and non-liver-related mortality occurred in 2.7 and 5.0 % of patients with SVR and in 17.8 and 6.4 % of patients without SVR. In a multivariate analysis, SVR was the only factor associated with reduced all-cause mortality (HR 0.47; 95 % CI 0.26-0.85; p = 0.012) and reduced liver-related events (HR 0.23; 95 % CI 0.08-0.66, p = 0.007). Having stage 4 liver fibrosis increased all-cause mortality (HR 2.50; 95 % CI 1.23-5.08; p = 0.011). Thrombocytopenia at baseline (HR 2.66; 95 % CI 1.22-5.79; p = 0.014) and stage 4 liver fibrosis (HR 4.87; 95 % CI 1.62-14.53; p = 0.005) increased liver-related events. CONCLUSIONS: Despite significant medical and psychiatric comorbidities, SVR markedly reduced liver-related outcomes without a significant change in non-liver-related mortality after a median follow-up of 7.5 years.
Resumo:
The existence of a resident population of intrahepatic immune cells (IHICs) is well documented for mammalian vertebrates, however, it is uncertain whether IHICs are present in the liver of teleostean fish. In the present study we investigated whether trout liver contains an IHIC population, and if so, what the relative cellular composition of this population is. The results provide clear evidence for the existence of an IHIC population in trout liver, which constitutes 15-29% of the non-hepatocytes in the liver, and with a cellular composition different to that of the blood leukocyte population. We also analyzed the response of IHICs to a non-infectious liver challenge with the hepatotoxic and immunotoxic chemical, benzo[a]pyrene (BaP). Juvenile trout were treated with BaP (25 or 100mg/kgbw) at levels sufficient to induce the molecular pathway of BaP metabolism while not causing pathological and inflammatory liver changes. The IHIC population responded to the BaP treatments in a way that differed from the responses of the leukocyte populations in trout blood and spleen, suggesting that IHICs are an independently regulated immune cell population.
Resumo:
The heparan sulfate (HS)-fibroblast growth factor (FGF) signaling system is a ubiquitous regulator that senses local environmental changes and mediates cell-to-cell communication. This system consists of three mutually interactive components. These are regulatory polypeptides (FGF), FGF receptor (FGFR) and heparan sulfate proteoglycans (FGFRHS). All four FGFR genes are expressed in the adult liver. Expression of the FGFR1–3 genes is generally associated with non-parenchymal cells while expression of the FGFR4 gene is associated with parenchymal hepatocytes. We showed that livers of mice lacking FGFR4 exhibited normal morphology and regenerated normally in response to partial hepatectomy. However, the FGFR4 (−/−) mice exhibited depleted gallbladders, an elevated bile acid pool and elevated excretion of bile acids. Cholesterol- and bile acid-controlled liver cholesterol 7α-hydroxylase (Cyp7a), the limiting enzyme for bile acid synthesis, was elevated, unresponsive to dietary cholesterol, but repressed normally by dietary cholate. These results indicated that FGFR4 was not directly involved in liver growth but exerted negative control on liver bile acid synthesis. This was confirmed in transgenic mice overexpressing the constitutively active human FGFR4 in livers. The transgenic mice exhibited decreased fecal bile acid excretion, bile acid pool size, and expression of Cyp7a. Introduction of this constitutively active human FGFR4 into FGFR4 (−/−) mice restored the inhibition of bile acid synthesis. Activation of the c-Jun N-terminal Kinase (JNK) pathway by FGFR4 correlated with the repressive effect on bile acid synthesis. ^ To determine whether FGFR4 played a broader role in liver-specific metabolic function, we examined the impact of both acute and chronic exposure to CCl 4 in FGFR4 (−/−) mice. Following acute CCl4 exposure, the FGFR4 (−/−) mice exhibited accelerated liver injury, a significant increase in liver mass and delayed hepatolobular repair, with no apparent effect on liver cell proliferation and restoration of cellularity. Chronic CCl4 exposure resulted in severe fibrosis in livers of FGFR4 (−/−) mice compared to normal mice. Analysis at both mRNA and protein levels indicated an 8 hr delay in FGFR4-deficient mice in the down-regulation of cytochrome P450 2E1 (CYP2E1) protein, the major enzyme whose products underlie CCl 4-induced injury. These results show that hepatocyte FGFR4 protects against acute and chronic insult to the liver and prevents accompanying fibrosis. ^ Of the 23 FGF polypeptides, FGF1 and FGF2 are present at significant levels in the liver. To determine whether FGF1 and FGF2 played a role in CCl 4-induced liver injury and fibrosis, we examined the impact of both acute and chronic exposure to CCl4 in both wild-type and FGF1-FGF2 double-knockout mice. Following acute CCl4 exposure, FGF1(−/−)FGF2(−/−) mice exhibited accelerated liver injury, overall normal liver growth and repair, and decreased liver collagen α1(I) induction. Liver fibrosis resulting from chronic CCl4 exposure was markedly decreased in livers of FGF1(−/−)FGF2(−/−) mice compared to wild-type mice. This study suggests a role for FGF1 and FGF2 in hepatic fibrogenesis. ^ In summary, our three part study shows that specific components of the ubiquitous HS-FGF signaling family in the liver context interfaces with metabolite- and xenobiotic-controlled networks to regulate liver function, but has no apparent direct effect on liver cell growth. ^
Resumo:
Arctic seabirds are exposed to a wide range of halogenated organic contaminants (HOCs). Exposure occurs mainly through food intake, and many pollutants accumulate in lipid-rich tissues. Little is known about how HOCs are biotransformed in arctic seabirds. In this study, we characterized biotransformation enzymes in chicks of northern fulmars (Fulmarus glacialis) and black-legged kittiwakes (Rissa tridactyla) from Kongsfjorden (Svalbard, Norway). Phase I and II enzymes were analyzed at the transcriptional, translational and activity levels. For gene expression patterns, quantitative polymerase chain reactions (qPCR), using gene-sequence primers, were performed. Protein levels were analyzed using immunochemical assays of western blot with commercially available antibodies. Liver samples were analyzed for phase I and II enzyme activities using a variety of substrates including ethoxyresorufin (cytochrome (CYP)1A1/1A2), pentoxyresorufin (CYP2B), methoxyresorufin (CYP1A), benzyloxyresorufin (CYP3A), testosterone (CYP3A/CYP2B), 1-chloro-2,4-nitrobenzene (CDNB) (glutathione S-transferase (GST)) and 4-nitrophenol (uridine diphosphate glucuronyltransferase (UDPGT)). In addition, the hydroxylated (OH-) polychlorinated biphenyls (PCBs) were analyzed in the blood, liver and brain tissue, whereas the methylsulfone (MeSO2-) PCBs were analyzed in liver tissue. Results indicated the presence of phase I (CYP1A4/CYP1A5, CYP2B, and CYP3A) and phase II (GST and UDPGT) enzymes at the activity, protein and/or mRNA level in both species. Northern fulmar chicks had higher enzyme activity than black-legged kittiwake chicks. This in combination with the higher XOH-PCB to parent PCB ratios suggests that northern fulmar chicks have a different biotransformation capacity than black-legged kittiwake chicks.
Resumo:
Dead and dying glaucous gulls (Larus hyperboreus) were collected on Bjornoya in the Barents Sea in 2003, 2004 and 2005. Autopsies of the seabirds only explained a clear cause of death for three (14%) of the 21 birds. A total of 71% of the birds were emaciated. Liver and brain samples were analysed for organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ether (PBDEs), hexabromo-cyclododecanes (HBCDs) and mercury (Hg). High levels of OCPs, PCBs, PBDEs and alpha-HBCD were found in liver and brain. Compared to the dead and dying glaucous gulls found 1989, the congeners' composition tended to change toward more persistent compounds in the 2003-2005 samples. The brain levels of OCPs and PCBs did not differ between 1989 and 2003-2005, while the liver levels were significantly lower. The brain/liver ratio for PCB and PBDE significantly decreased with halogenations of the molecule, indicating a clear discrimination of highly halogenated PCBs and PBDEs entering the brain. There was further a clear negative correlation between contaminant concentrations and body condition. The brain levels were not as high as earlier published lethal levels of p,p'-DDE or PCB. However, more recent studies reported a range of sub-lethal OCP- and PCB-related effects in randomly sampled glaucous gulls. An additional elevation of pollutants due to emaciation may increase the stress of the already affected birds. The high brain levels of OCP, PCB and PBDE of present study might therefore have contributed to the death of weakened individuals of glaucous gull.
Resumo:
The influence of source and level of inclusion of raw glycerin (GLYC) in the diet on growth performance, digestive traits, total tract apparent retention (TTAR), and apparent ileal digestibility of nutrients was studied in broilers from 1 to 21 d of age. There was a control diet based on corn and soybean meal and 8 additional diets that formed a 2 × 4 factorial with 2 sources of GLYC and 4 levels of inclusion (2.5, 5.0, 7.5, and 10%). The GLYC used were obtained from the same original batch of soy oil that was dried under different processing conditions and contained 87.5 or 81.6% glycerol, respectively. Type of processing of the GLYC did not affect any of the variables studied except DM and organic matter retention (P < 0.05) that was higher for the 87.5% glycerol diet. From d 1 to 21, feed conversion ratio (FCR) improved linearly (L, P ≤ 0.01) as the GLYC content of the diet increased, but ADG was not affected. On d 21, the relative weight (% BW) of the liver and the digestive tract increased (L, P < 0.01) as the level of GLYC in the diet increased, but lipid concentration in the liver was not affected. The TTAR of DM and organic matter increased quadratically (Q, P < 0.05) and the AMEn content of the diet increased linearly (L, P < 0.01) with increases in dietary GLYC. Also, the apparent ileal digestibility of DM (L, P < 0.05; Q, P = 0.07) and gross energy (L, P < 0.01) increased as the GLYC content of the diet increased. It is concluded that raw GLYC from the biodiesel industry can be used efficiently, up to 10% of the diet, as a source of energy for broilers from 1 to 21 d of age and that the energy content of well-processed raw GLYC depends primarily on its glycerol content.
Resumo:
The addition of oxygenated renewable fuels, such as ethanol or ethyl tert-butyl ether (ETBE) to standard gasoline may be necessary to comply with some environmental directives but could also prevent compliance with some fuel regulations and could also seriously change engine performance. From this point of view, the Reid Vapour Pressure (RVP), the distillation curve, the oxygen content and the density belong to the group of the most relevant parameters. This study evaluates the influence of the simultaneous addition of ethanol and ETBE on some physical properties of engine gasoline. The main conclusion is that the simultaneous addition of ETBE and ethanol changes the RVP, the distillation curve and the density in a way that can affect engine operation and the mandatory EN 228 and ASTM D4814 standards. Some opposite properties of both oxygenates could help to increase the renewable energy content without preventing compliance with these regulations.
Resumo:
The signal transducer and activator of transcription, STAT5b, has been implicated in signal transduction pathways for a number of cytokines and growth factors, including growth hormone (GH). Pulsatile but not continuous GH exposure activates liver STAT5b by tyrosine phosphorylation, leading to dimerization, nuclear translocation, and transcriptional activation of the STAT, which is proposed to play a key role in regulating the sexual dimorphism of liver gene expression induced by pulsatile plasma GH. We have evaluated the importance of STAT5b for the physiological effects of GH pulses using a mouse gene knockout model. STAT5b gene disruption led to a major loss of multiple, sexually differentiated responses associated with the sexually dimorphic pattern of pituitary GH secretion. Male-characteristic body growth rates and male-specific liver gene expression were decreased to wild-type female levels in STAT5b−/− males, while female-predominant liver gene products were increased to a level intermediate between wild-type male and female levels. Although these responses are similar to those observed in GH-deficient Little mice, STAT5b−/− mice are not GH-deficient, suggesting that they may be GH pulse-resistant. Indeed, the dwarfism, elevated plasma GH, low plasma insulin-like growth factor I, and development of obesity seen in STAT5b−/− mice are all characteristics of Laron-type dwarfism, a human GH-resistance disease generally associated with a defective GH receptor. The requirement of STAT5b to maintain sexual dimorphism of body growth rates and liver gene expression suggests that STAT5b may be the major, if not the sole, STAT protein that mediates the sexually dimorphic effects of GH pulses in liver and perhaps other target tissues. STAT5b thus has unique physiological functions for which, surprisingly, the highly homologous STAT5a is unable to substitute.
Resumo:
SOCS-1, a member of the suppressor of cytokine signaling (SOCS) family, was identified in a genetic screen for inhibitors of interleukin 6 signal transduction. SOCS-1 transcription is induced by cytokines, and the protein binds and inhibits Janus kinases and reduces cytokine-stimulated tyrosine phosphorylation of signal transducers and activators of transcription 3 and the gp130 component of the interleukin 6 receptor. Thus, SOCS-1 forms part of a feedback loop that modulates signal transduction from cytokine receptors. To examine the role of SOCS-1 in vivo, we have used gene targeting to generate mice lacking this protein. SOCS-1−/− mice exhibited stunted growth and died before weaning with fatty degeneration of the liver and monocytic infiltration of several organs. In addition, the thymus of SOCS-1−/− mice was reduced markedly in size, and there was a progressive loss of maturing B lymphocytes in the bone marrow, spleen, and peripheral blood. Thus, SOCS-1 is required for in vivo regulation of multiple cell types and is indispensable for normal postnatal growth and survival.