289 resultados para Lineations
Resumo:
Brown sediment with clasts ranging from small to large in size. Clast shape ranges from angular to sub-rounded. Lineations and rotation structures can be commonly seen throughout the sample. Minor amounts of comet structures, grain crushing and grain stacking can also be seen.
Resumo:
Dark brown sediment with clasts ranging from small to large. The sample is mostly made up of large clasts. Clast shape ranges from angular to sub-angular. Necking structures are common throughout this sample and can mainly be seen between larger aggregates. Edge-to-edge grain crushing, crushed grains, and some lineations can also be seen.
Resumo:
Dark brown sediment with clasts ranging from small to large in size. Clast shape ranges from angular to sub-rounded. The main domain mainly contains larger aggregates. There is one domain inclusion in this sample. It mainly contains small and medium sized clasts, and contains many lineations. Necking structures can be commonly seen in the main domain between larger aggregates. This sample also contains many elongated clasts and inclusions of clay material.
Resumo:
Light brown sediment with clasts ranging from small to large in size. Clast shape ranges from angular to sub-rounded. Grain crushing is present in this sample, along with grain stacking. Minor amounts of lineations, and faint rotation structures can also be seen.
Resumo:
Brown sediment with clasts ranging from small to large. Clast shape ranges from angular to rounded. Lineations and comet structures are abundant throughout this sample. It also contains rotation structures and minor amounts of grain crushing.
Resumo:
Brown sediment with clasts ranging from small to large in size. Clast shape ranges from angular to sub-rounded. Lineations and comet structures are commonly seen throughout the sample. Rotation structures with and without central grains can also be seen.
Resumo:
Brown sediment with clasts ranging from small to large in size. Clast shape ranges from angular to rounded. Lineations and rotation structures were abundant in this sample, Rotation structures were seen with and without central grains. Comet structures were also present in this sample along with minor amounts of grain stacking.
Resumo:
Dark brown sediment with clasts ranging from small to large in size. Clast shape ranges from angular to sub-rounded. Lineations can be seen throughout the sample, along with a few rotation and comet structures. This sample also contains a fine grained clay domain that is relatively structure-less. It can be seen scattered throughout the sample.
Resumo:
Brown sediment with clasts ranging from small to large in size. Clast shape ranges from angular to sub-rounded. Lineations and rotation structures are abundant throughout the sample. Comet structures can also be seen. Minor amounts of grains crushing/stacking are also present.
Resumo:
Brown sediment with clasts ranging from small to medium in size. Clast shape ranges from angular to sub-rounded. Rotation structures and comet structures are commonly seen throughout this sample. Lineations are also common. Minor amounts of grain stacking can also be seen. Some grains appear to be fractured and/or weathered.
Resumo:
Brown sediment with clasts ranging from small to large. Clast shape ranges from angular to sub-rounded. Lineations are common throughout the sample. This sample also contains a clay domain, that appears very fine grained. Edge-to-edge grain crushing, comet structures, and rotation structures are also present.
Resumo:
Brown sediment with clasts ranging from small to large. Clast shape ranges from angular to sub-rounded. Lineations and rotation structures are scattered throughout the entire sample. Comet structures are also present. Minor amounts of grain stacking can also be seen.
Resumo:
Brown sediment with inclusions of a clay rich domain. Clasts range from small to medium in size and angular to sub-rounded in shape. Lineations can be commonly seen throughout the sample, along with water escape structures in the clay rich domain. Rotation structures, comet structures, and grain crushing are also present.
Resumo:
We report evidence for a major ice stream that operated over the northwestern Canadian Shield in the Keewatin Sector of the Laurentide Ice Sheet during the last deglaciation 9000-8200 (uncalibrated) yr BP. It is reconstructed at 450 km in length, 140 km in width, and had an estimated catchment area of 190000 km. Mapping from satellite imagery reveals a suite of bedforms ('flow-set') characterized by a highly convergent onset zone, abrupt lateral margins, and where flow was presumed to have been fastest, a remarkably coherent pattern of mega-scale glacial lineations with lengths approaching 13 km and elongation ratios in excess of 40:1. Spatial variations in bedform elongation within the flow-set match the expected velocity field of a terrestrial ice stream. The flow pattern does not appear to be steered by topography and its location on the hard bedrock of the Canadian Shield is surprising. A soft sedimentary basin may have influenced ice-stream activity by lubricating the bed over the downstream crystalline bedrock, but it is unlikely that it operated over a pervasively deforming till layer. The location of the ice stream challenges the view that they only arise in deep bedrock troughs or over thick deposits of 'soft' fine-grained sediments. We speculate that fast ice flow may have been triggered when a steep ice sheet surface gradient with high driving stresses contacted a proglacial lake. An increase in velocity through calving could have propagated fast ice flow upstream (in the vicinity of the Keewatin Ice Divide) through a series of thermomechanical feedback mechanisms. It exerted a considerable impact on the Laurentide Ice Sheet, forcing the demise of one of the last major ice centres.
Resumo:
Elucidating the controls on the location and vigor of ice streams is crucial to understanding the processes that lead to fast disintegration of ice flows and ice sheets. In the former North American Laurentide ice sheet, ice stream occurrence appears to have been governed by topographic troughs or areas of soft-sediment geology. This paper reports robust evidence of a major paleo-ice stream over the northwestern Canadian Shield, an area previously assumed to be incompatible with fast ice flow because of the low relief and relatively hard bedrock. A coherent pattern of subglacial bedforms (drumlins and megascalle glacial lineations) demarcates the ice stream flow set, which exhibits a convergent onset zone, a narrow main trunk with abrupt lateral margins, and a lobate terminus. Variations in bedform elongation ratio within the flow set match theoretical expectations of ice velocity. In the center of the ice stream, extremely parallel megascalle glacial lineations tens of kilometers long with elongation ratios in excess of 40:1 attest to a single episode of rapid ice flow. We conclude that while bed properties are likely to be influential in determining the occurrence and vigor of ice streams, contrary to established views, widespread soft-bed geology is not an essential requirement for those ice streams without topographic control. We speculate that the ice stream acted as a release valve on ice-sheet mass balance and was initiated by the presence of a proglacial lake that destabilized the ice-sheet margin and propagated fast ice flow through a series of thermomechanical feedbacks involving ice flow and temperature.