995 resultados para Library theory


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a new approach accounting for the nonadditivity of attractive parts of solid-fluid and fluidfluid potentials to improve the quality of the description of nitrogen and argon adsorption isotherms on graphitized carbon black in the framework of non-local density functional theory. We show that the strong solid-fluid interaction in the first monolayer decreases the fluid-fluid interaction, which prevents the twodimensional phase transition to occur. This results in smoother isotherm, which agrees much better with experimental data. In the region of multi-layer coverage the conventional non-local density functional theory and grand canonical Monte Carlo simulations are known to over-predict the amount adsorbed against experimental isotherms. Accounting for the non-additivity factor decreases the solid-fluid interaction with the increase of intermolecular interactions in the dense adsorbed fluid, preventing the over-prediction of loading in the region of multi-layer adsorption. Such an improvement of the non-local density functional theory allows us to describe experimental nitrogen and argon isotherms on carbon black quite accurately with mean error of 2.5 to 5.8% instead of 17 to 26% in the conventional technique. With this approach, the local isotherms of model pores can be derived, and consequently a more reliab * le pore size distribution can be obtained. We illustrate this by applying our theory against nitrogen and argon isotherms on a number of activated carbons. The fitting between our model and the data is much better than the conventional NLDFT, suggesting the more reliable PSD obtained with our approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we applied a version of the nonlocal density functional theory (NLDFT) accounting radial and longitudinal density distributions to study the adsorption and desorption of argon in finite as well as infinite cylindrical nanopores at 87.3 K. Features that have not been observed before with one-dimensional NLDFT are observed in the analysis of an inhomogeneous fluid along the axis of a finite cylindrical pore using the two-dimensional version of the NLDFT. The phase transition in pore is not strictly vapor-liquid transition as assumed and observed in the conventional version, but rather it exhibits a much elaborated feature with phase transition being complicated by the formation of solid phase. Depending on the pore size, there are more than one phase transition in the adsorption-desorption isotherm. The solid formation in finite pore has been found to be initiated by the presence of the meniscus. Details of the analysis of the extended version of NLDFT will be discussed in the paper. (C) 2004 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new approach based on the nonlocal density functional theory to determine pore size distribution (PSD) of activated carbons and energetic heterogeneity of the pore wall is proposed. The energetic heterogeneity is modeled with an energy distribution function (EDF), describing the distribution of solid-fluid potential well depth (this distribution is a Dirac delta function for an energetic homogeneous surface). The approach allows simultaneous determining of the PSD (assuming slit shape) and EDF from nitrogen or argon isotherms at their respective boiling points by using a set of local isotherms calculated for a range of pore widths and solid-fluid potential well depths. It is found that the structure of the pore wall surface significantly differs from that of graphitized carbon black. This could be attributed to defects in the crystalline structure of the surface, active oxide centers, finite size of the pore walls (in either wall thickness or pore length), and so forth. Those factors depend on the precursor and the process of carbonization and activation and hence provide a fingerprint for each adsorbent. The approach allows very accurate correlation of the experimental adsorption isotherm and leads to PSDs that are simpler and more realistic than those obtained with the original nonlocal density functional theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examine the question of the optimal number of reserves that should be established to maximize the persistence of a species. We assume that the mean time to extinction of a single population increases as a power of the habitat area, that there is a certain amount of habitat to be reserved, and that the aim is to determine how this habitat is most efficiently divided. The optimal configuration depends on whether the management objective is to maximize the mean time to extinction or minimize the risk of extinction. When maximizing the mean time to extinction, the optimal number of independent reserves does not depend on the amount of available habitat for the reserve system. In contrast, the risk of extinction is minimized when individual reserves are equal to the optimal patch size, making the optimal number of reserves linearly proportional to the amount of available habitat. A model that includes dispersal and correlation in the incidence of extinction demonstrates the importance of considering the relative rate at which these two factors decrease with distance between reserves. A small number of reserves is optimal when the mean time to extinction increases rapidly with habitat area or when risks of extinction are high.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monitoring of marine reserves has traditionally focused on the task of rejecting the null hypothesis that marine reserves have no impact on the population and community structure of harvested populations. We consider the role of monitoring of marine reserves to gain information needed for management decisions. In particular we use a decision theoretic framework to answer the question: how long should we monitor the recovery of an over-fished stock to determine the fraction of that stock to reserve? This exposes a natural tension between the cost (in terms of time and money) of additional monitoring, and the benefit of more accurately parameterizing a population model for the stock, that in turn leads to a better decision about the optimal size for the reserve with respect to harvesting. We found that the optimal monitoring time frame is rarely more than 5 years. A higher economic discount rate decreased the optimal monitoring time frame, making the expected benefit of more certainty about parameters in the system negligible compared with the expected gain from earlier exploitation.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper explores the theoretical and policy implications of contemporary American hegemony. A key argument is that the development of US hegemony generally, and the distinctive turn in US foreign policy that has occurred in the wake of 11 September in particular, can best be understood by placing recent events in a comparative and historical framework. The immediate post-World War II order laid the foundations of a highly institutionalised multilateral system that provided key benefits for a number of countries while simultaneously constraining and enhancing US power. An historical reading of US hegemony suggests that its recent unilateralism is undermining the foundations of its power and influence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present the results of the prediction of the high-pressure adsorption equilibrium of supercritical. gases (Ar, N-2, CH4, and CO2) on various activated carbons (BPL, PCB, and Norit R1 extra) at various temperatures using a density-functional-theory-based finite wall thickness (FWT) model. Pore size distribution results of the carbons are taken from our recent previous work 1,2 using this approach for characterization. To validate the model, isotherms calculated from the density functional theory (DFT) approach are comprehensively verified against those determined by grand canonical Monte Carlo (GCMC) simulation, before the theoretical adsorption isotherms of these investigated carbons calculated by the model are compared with the experimental adsorption measurements of the carbons. We illustrate the accuracy and consistency of the FWT model for the prediction of adsorption isotherms of the all investigated gases. The pore network connectivity problem occurring in the examined carbons is also discussed, and on the basis of the success of the predictions assuming a similar pore size distribution for accessible and inaccessible regions, it is suggested that this is largely related to the disordered nature of the carbon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a new version of non-local density functional theory (NL-DFT) adapted to description of vapor adsorption isotherms on amorphous materials like non-porous silica. The novel feature of this approach is that it accounts for the roughness of adsorbent surface. The solid–fluid interaction is described in the same framework as in the case of fluid–fluid interactions, using the Weeks–Chandler–Andersen (WCA) scheme and the Carnahan–Starling (CS) equation for attractive and repulsive parts of the Helmholtz free energy, respectively. Application to nitrogen and argon adsorption isotherms on non-porous silica LiChrospher Si-1000 at their boiling points, recently published by Jaroniec and co-workers, has shown an excellent correlative ability of our approach over the complete range of pressures, which suggests that the surface roughness is mostly the reason for the observed behavior of adsorption isotherms. From the analysis of these data, we found that in the case of nitrogen adsorption short-range interactions between oxygen atoms on the silica surface and quadrupole of nitrogen molecules play an important role. The approach presented in this paper may be further used in quantitative analysis of adsorption and desorption isotherms in cylindrical pores such as MCM-41 and carbon nanotubes.