992 resultados para Leishmania (Viannia) guyanensis
Resumo:
Telomerase RNAs (TERs) are highly divergent between species, varying in size and sequence composition. Here, we identify a candidate for the telomerase RNA component of Leishmania genus, which includes species that cause leishmaniasis, a neglected tropical disease. Merging a thorough computational screening combined with RNA-seq evidence, we mapped a non-coding RNA gene localized in a syntenic locus on chromosome 25 of five Leishmania species that shares partial synteny with both Trypanosoma brucei TER locus and a putative TER candidate-containing locus of Crithidia fasciculata. Using target-driven molecular biology approaches, we detected a ∼2,100 nt transcript (LeishTER) that contains a 5' spliced leader (SL) cap, a putative 3' polyA tail and a predicted C/D box snoRNA domain. LeishTER is expressed at similar levels in the logarithmic and stationary growth phases of promastigote forms. A 5'SL capped LeishTER co-immunoprecipitated and co-localized with the telomerase protein component (TERT) in a cell cycle-dependent manner. Prediction of its secondary structure strongly suggests the existence of a bona fide single-stranded template sequence and a conserved C[U/C]GUCA motif-containing helix II, representing the template boundary element. This study paves the way for further investigations on the biogenesis of parasite TERT ribonucleoproteins (RNPs) and its role in parasite telomere biology.
Resumo:
Visceral leishmaniasis (VL) is a widely spread zoonotic disease. In Brazil the disease is caused by Leishmania (Leishmania) infantum chagasi. Peridomestic sandflies acquire the etiological agent by feeding on blood of infected reservoir animals, such as dogs or wildlife. The disease is endemic in Brazil and epidemic foci have been reported in densely populated cities all over the country. Many clinical features of Leishmania infection are related to the host-parasite relationship, and many candidate virulence factors in parasites that cause VL have been studied such as A2 genes. The A2 gene was first isolated in 1994 and then in 2005 three new alleles were described in Leishmania (Leishmania) infantum. In the present study we amplified by polymerase chain reaction (PCR) and sequenced the A2 gene from the genome of a clonal population of L. (L.) infantum chagasi VL parasites. The L. (L.) infantum chagasi A2 gene was amplified, cloned, and sequenced in. The amplified fragment showed approximately 90% similarity with another A2 allele amplified in Leishmania (Leishmania) donovani and in L.(L.) infantum described in literature. However, nucleotide translation shows differences in protein amino acid sequence, which may be essential to determine the variability of A2 genes in the species of the L. (L.) donovani complex and represents an additional tool to help understanding the role this gene family may have in establishing virulence and immunity in visceral leishmaniasis. This knowledge is important for the development of more accurate diagnostic tests and effective tools for disease control.
Resumo:
The parasitic protozoan Leishmania (Leishmania) amazonensis alternates between mammalian and insect hosts. In the insect host, the parasites proliferate as procyclic promastigotes andthen differentiate into metacyclic infective forms. The meta 1 gene is preferentially expressed during metacyclogenesis. Meta 1 expression profile determination along parasite growth curves revealed that the meta 1 mRNA level peaked at the early stationary phase then decreased to an intermediate level. No correlation was observed between meta 1 expression and infectivity. Conversely, infectivity correlated with the increase of apoptotic cells in the late stationary phase.
Resumo:
The arguments for the usage of the names Gnathoplax, Roeboexodon, R. geryi, and R. guyanensis are revised. Based on the literature and museum specimens, we recommend that the neotype of Exodon guyanensis should be considered valid; that the genus Gnathoplax should be considered an objective junior synonym of Roeboexodon; and that Roeboexodon geryi should be considered an objective junior synonym of Exodonguyanensis.
Resumo:
INTRODUCTION: The work was conducted to study phlebotomine fauna (Diptera: Psychodidae) and aspects of American cutaneous leishmaniasis transmission in a forested area where Leishmania (Leishmania) amazonensis occurs, situated in the municipality of Bela Vista, State of Mato Grosso do Sul, Brazil. METHODS: The captures were conducted with modified Disney traps, using hamster (Mesocricetus auratus) as bait, from May 2004 to January 2006. RESULTS: Ten species of phlebotomine sandflies were captured: Brumptomyia avellari, Brumptomyia brumpti, Bichromomyia flaviscutellata, Evandromyia bourrouli, Evandromyia lenti, Lutzomyia longipalpis, Psathyromyia campograndensis, Psathyromyia punctigeniculata, Psathyromyia shannoni and Sciopemyia sordellii. The two predominant species were Ev bourrouli (57.3%) and Bi flaviscutellata (41.4%), present at all sampling sites. Two of the 36 hamsters used as bait presented natural infection with Leishmania. The parasite was identified as Leishmania (Leishmania) amazonensis. CONCLUSIONS: Analysis of the results revealed the efficiency of Disney traps for capturing Bichromomyia flaviscutellata and the simultaneous presence of both vector and the Leishmania species transmitted by the same can be considered a predictive factor of the occurrence of leishmaniasis outbreaks for the human population that occupies the location.
Resumo:
The present study assessed the prevalence of anti-Leishmania spp. antibodies in dogs from the city of Monte Negro, State of Rondônia, Brazil. ELISA (NE > 3) and IFAT (>1:40) were used to evaluate 161 serum samples collected from rural dogs from Monte Negro. Forty-five (27.9%) dogs were positive by ELISA tests and five (3.1%) were positive by IFAT. The present study showed for the first time the frequency of exposure to Leishmania spp. in dogs in the State of Rondônia, Amazon Region.
Resumo:
This study aimed to evaluate the presence of antibodies against Neospora caninum, Toxoplasma gondii and Leishmania infantum in dogs attended at the Veterinary Hospital of the Federal University of Piauí, Northeastern Brazil, where there are no reports of the occurrence of N. caninum and T. gondii in dogs. Serum samples from 530 dogs of genders, different ages and breeds from the municipality of Teresina and nearby towns were analyzed using three indirect fluorescent antibody tests, each one targeting one of the three agents. The associations between the parasites and gender, breed and age of the dogs were assessed by the chi-square test (p > 0.05). The occurrence of antibodies to N. caninum, T. gondii and L. infantum was 3.2, 18.0 and 78.1%, respectively. Toxoplasma gondii was more frequently found in older dogs (p < 0.05) whereas L. infantum was more common in animals aged between 1 to 3 years (p < 0.05). In order to evaluate potential associations between the presence of anti-N. caninum and anti-T. gondii antibodies and Leishmania infection, 240 dogs were selected (120 positive and 120 negative for Leishmania spp.), based on serological and parasitological diagnoses. No association was found between Leishmania spp. and the coccidian parasites (p > 0.05). The results confirm the exposure of dogs to these parasites in the State of Piauí.
Resumo:
Nucleoside hydrolases (NHs) show homology among parasite protozoa, fungi and bacteria. They are vital protagonists in the establishment of early infection and, therefore, are excellent candidates for the pathogen recognition by adaptive immune responses. Immune protection against NHs would prevent disease at the early infection of several pathogens. We have identified the domain of the NH of L. donovani (NH36) responsible for its immunogenicity and protective efficacy against murine visceral leishmaniasis (VL). Using recombinant generated peptides covering the whole NH36 sequence and saponin we demonstrate that protection against L. chagasi is related to its C-terminal domain (amino-acids 199-314) and is mediated mainly by a CD4+ T cell driven response with a lower contribution of CD8+ T cells. Immunization with this peptide exceeds in 36.73 +/- 12.33% the protective response induced by the cognate NH36 protein. Increases in IgM, IgG2a, IgG1 and IgG2b antibodies, CD4+ T cell proportions, IFN-gamma secretion, ratios of IFN-gamma/IL-10 producing CD4+ and CD8+ T cells and percents of antibody binding inhibition by synthetic predicted epitopes were detected in F3 vaccinated mice. The increases in DTH and in ratios of TNF alpha/IL-10 CD4+ producing cells were however the strong correlates of protection which was confirmed by in vivo depletion with monoclonal antibodies, algorithm predicted CD4 and CD8 epitopes and a pronounced decrease in parasite load (90.5-88.23%; p = 0.011) that was long-lasting. No decrease in parasite load was detected after vaccination with the N-domain of NH36, in spite of the induction of IFN-gamma/IL-10 expression by CD4+ T cells after challenge. Both peptides reduced the size of footpad lesions, but only the C-domain reduced the parasite load of mice challenged with L. amazonensis. The identification of the target of the immune response to NH36 represents a basis for the rationale development of a bivalent vaccine against leishmaniasis and for multivalent vaccines against NHs-dependent pathogens.
Resumo:
Background: Concomitant infections may influence HIV progression by causing chronic activation leading to decline in T-cell function. In the Americas, visceral (AVL) and tegumentary leishmaniasis (ATL) have emerged as important opportunistic infections in HIV-AIDS patients and both of those diseases have been implicated as potentially important co-factors in disease progression. We investigated whether leishmaniasis increases lymphocyte activation in HIV-1 co-infected patients. This might contribute to impaired cellular immune function. Methods: To address this issue we analyzed CD4(+) T absolute counts and the proportion of CD8(+) T cells expressing CD38 in Leishmania/HIV co-infected patients that recovered after anti-leishmanial therapy. Results: We found that, despite clinical remission of leishmaniasis, AVL co-infected patients presented a more severe immunossupression as suggested by CD4(+) T cell counts under 200 cells/mm(3), differing from ATL/HIV-AIDS cases that tends to show higher lymphocytes levels (over 350 cells/mm(3)). Furthermore, five out of nine, AVL/HIV-AIDS presented low CD4(+) T cell counts in spite of low or undetectable viral load. Expression of CD38 on CD8(+) T lymphocytes was significantly higher in AVL or ATL/HIV-AIDS cases compared to HIV/AIDS patients without leishmaniasis or healthy subjects. Conclusions: Leishmania infection can increase the degree of immune system activation in individuals concomitantly infected with HIV. In addition, AVL/HIV-AIDS patients can present low CD4(+) T cell counts and higher proportion of activated T lymphocytes even when HIV viral load is suppressed under HAART. This fact can cause a misinterpretation of these laboratorial markers in co-infected patients.
Resumo:
Little is known about the importance of capybara. Hydrochoerus hydrochaeris, as reservoirs for parasites of zoonotic or veterinary importance. Sera from 63 capybaras, from 6 counties in the state of Sao Paulo, Brazil, were examined for antibodies to Trypanosoma cruel, Leishmania infantum, Encephalitozoon cuniculi. Sarcacystis neurona, and Neospora caninum using an indirect immunofluorescent antibody test. Five (8%) of the 63 capybaras had antibodies to T cruzi epimastigotes. None of the samples from capybara reacted positively with L. infantum promastigotes or with spores of E. cuniculi. Two (3%) of the serum samples were positive for antibodies to S. neurona merozoites, and 2 (3%) of the serum samples were positive for antibodies to N. caninum tachyzoites. A serum sample from 1 capybara was positive for antibodies to both T cruzi and N. caninum. None of the remaining 62 samples reacted with more than 1 parasite.
Resumo:
Background: Chemotherapy is still a critical issue in the management of leishmaniasis. Until recently, pentavalent antimonials, amphotericin B or pentamidine compounded the classical arsenal of treatment. All these drugs are toxic and have to be administered by the parenteral route. Tamoxifen has been used as an antiestrogen in the treatment and prevention of breast cancer for many years. Its safety and pharmacological profiles are well established in humans. We have shown that tamoxifen is active as an antileishmanial compound in vitro, and in this paper we analyzed the efficacy of tamoxifen for the treatment of mice infected with Leishmania amazonensis, an etiological agent of localized cutaneous leishmaniasis and the main cause of diffuse cutaneous leishmaniasis in South America. Methodology/Principal Findings: BALB/c mice were infected with L. amazonensis promastigotes. Five weeks post-infection, treatment with 15 daily intraperitoneal injections of 20 mg/kg tamoxifen was administered. Lesion and ulcer sizes were recorded and parasite burden quantified by limiting dilution. A significant decrease in lesion size and ulcer development was noted in mice treated with tamoxifen as compared to control untreated animals. Parasite burden in the inoculation site at the end of treatment was reduced from 10(8.5 +/- 0.7) in control untreated animals to 10(5.0 +/- 0.0) in tamoxifen-treated mice. Parasite load was also reduced in the draining lymph nodes. The reduction in parasite number was sustained: 6 weeks after the end of treatment, 10(15.5 +/- 0.5) parasites were quantified from untreated animals, as opposed to 10(5.1 +/- 0.1) parasites detected in treated mice. Conclusions/Significance: Treatment of BALB/c mice infected with L. amazonensis for 15 days with tamoxifen resulted in significant decrease in lesion size and parasite burden. BALB/c mice infected with L. amazonensis represents a model of extreme susceptibility, and the striking and sustained reduction in the number of parasites in treated animals supports the proposal of further testing of this drug in other models of leishmaniasis.
Resumo:
Xylitol is a sugar alcohol being explored for clinical uses. The aim was to evaluate the effects of xylitol on Leishmania amazonensis-infected J774A.1 macrophages. Macrophages were infected with L. amazonensis for 3 It, washed and incubated with 2.5 or 5.0% xylitol for 24, 48, and 72 h at 37 degrees C. Infection indexes for macrophages incubated only in medium were compared to those treated with xylitol. Cell viability and nitric oxide production were determined each time. Xylitol did not affect L. amazonensis or J774A.1 cell viabilities. Xylitol at 5.0% stimulated nitric oxide production by macrophages at 72 h (p < 0.01). At 2.5 and 5.0%, xylitol inhibited nitric oxide production by L. amazonensis at 48 h. (p < 0.05) when compared to control. Infection indexes were significantly lower at 72 h (P < 0.05), (16.9% and 9.6%) in cells cultivated with 2.5 and 5.0% xylitol, respectively, compared to control (38.4%). Results suggest a potential leishmanicidal action of the xylitol on infected macropliages. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
We standardized serodiagnosis of dogs infected with Trypanosoma cruzi using TESA (trypomastigote excreted-secreted antigen)-blot developed for human Chagas disease. TESA-blot showed 100% sensitivity and specificity. In contrast, ELISA using TESA (TESA-ELISA) or epimastigotes (epi-ELISA) as antigen yielded 100% sensitivity but specificity of 94.1% and 49.4%, respectively. When used in field studies in an endemic region for Chagas disease, visceral leishmaniasis and Trypanosoma evansi (Mato Grosso do Sul state, Central Brazil), positivities were 9.3% for TESA-blot, 10.7% for TESA-ELISA and 32% for epi-ELISA. Dogs from a non-endemic region for these infections (Rondonia state, western Amazonia) where T cruzi is enzootic showed positivity of 4.5% for TESA-blot and epi-ELISA and 6.8% for TESA-ELISA. Sera from urban dogs from Santos, Sao Paulo, where these diseases are absent, yielded negative results. TESA-blot was the only method that distinguished dogs infected with T cruzi from those infected with Leishmania chagasi and/or Trypanosoma evansi. (C) 2009 Published by Elsevier B.V.
Resumo:
Intracellular amastigotes of the protozoan parasite Leishmania mexicana secrete a macromolecular proteophosphoglycan (aPPG) into the phagolysosome of their host cell, the mammalian macrophage. The structures of aPPG glycans were analyzed by a combination of high pH anion exchange high pressure liquid chromatography, gas chromatography-mass spectrometry, enzymatic digestions, electrospray-mass spectrometry as well as H-1 and P-31 NMR spectroscopy. Some glycans are identical to oligosaccharides known from Leishmania mexicana promastigote lipophosphoglycan and secreted acid phosphatase, However, the majority of the aPPG glycans represent amastigote stage-specific and novel structures. These include neutral glycans ([Glc beta(1-3)](1-2)Gal beta 1-4Man, Gal beta 1-3Gal beta 1-4Man, Gal beta 1-3Glc beta 1-3Gal beta 1-4Man), several monophosphorylated glycans containing the conserved phosphodisaccharide backbone (R-3-[PO4-6-Gal]beta 1-4Man) but carrying stage-specific modifications (R = Gal beta 1-, [Glc beta 1-3](1-2)Glc beta 1-), and monophosphorylated aPPG tri- and tetrasaccharides that are uniquely phosphorylated on the terminal hexose (PO4-6-Glc beta 1-3Gal beta 1-4Man, PO4-6-Glc beta 1-3Glc beta 1-3Gal beta 1-4Man, PO4-6-Gal beta 1-3Glc beta 1-3Gal beta 1-4Man), In addition aPPG contains highly unusual di- and triphosphorylated glycans whose major species are PO4-6-Glc beta 1-3Glc beta 1-3[PO4-6-Gal]beta 1-4Man, PO4-6-Gal beta 1-3Glc beta 1-3 [PO4-6-Gal]beta 1-4Man, PO4-6-GaL beta 1-3Glc beta 1-3Glc beta 1-3[PO4-6-Gal]beta 1-4Man, PO4-6-Glc beta 1-3[PO4-6-Glc]beta 1-3[PO4-6-Gal]beta 1-4Man, PO4-6Gal beta 1-3[PO4-6-Glc]beta 1-3Glc beta 1-3[PO4-6-Gal]beta 1-4Man, and PO4-6-Glc beta 1-3[PO4-6-Glc]beta 1-3Glc beta 1-3[PO4-6-Gal]beta 1-4Man. These glycans are linked together by the conserved phosphodiester R-Man alpha 1-PO4-6-Gal-R or the novel phosphodiester R-Man alpha 1-PO4-6-Glc-R and are connected to Ser(P) of the protein backbone most likely via the linkage R-Man alpha 1-PO4-Ser. The variety of stage-specific glycan structures in Leishmania mexicana aPPG suggests the presence of developmentally regulated amastigote glycosyltransferases which may be potential anti-parasite drug targets.